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ABSTRACT

The general theme of this dissertation is the study of impacts of weather variability

on crop yields, with each chapter addressing a specific topic related to this theme. Chap-

ter 2 tests the hypothesis that corn and soybeans have become more drought tolerant

by regressing county yields on a drought index and time. Results indicate that corn

yield losses from drought of a given severity, whether measured in quantity terms or as

a percentage of mean yields, have decreased over time. Soybean percentage yield losses

have also declined but absolute losses have remained largely constant. The potential

impact of increased drought tolerance on U.S. crop insurance rates is illustrated by com-

paring Group Risk Plan (GRP) premium rates assuming time-invariant susceptibility to

drought with rates generated from regression results in this dissertation. Chapter 3 de-

velops a linear spline model with endogenous knots to capture the non-linear impacts of

rainfall and temperature on corn yields. A hierarchical structure is applied to capture the

county-specific factors determining corn yields. Using Bayesian techniques, the thresh-

olds and other model parameters are simultaneously estimated. Gibbs sampling and the

Metropolis - Hastings algorithm are applied to estimate the posterior distributions. Corn

yield decreases significantly above the upper temperature threshold and below the lower

rainfall threshold. Results indicate a geographically clustering pattern of how corn yields

respond to changes in temperature and rainfall. Chapter 4 applies the linear spline yield

model developed in chapter 3 to examine weather impacts on yield trend, yield risk, and
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the distribution of corn yield. The climate trend from 1980 to 2009 explains up to 20% of

observed yield trend. Not controlling for temporal weather patters leads to biased trend

estimates, especially for short times series. Isolating changes in weather variability in

the sample period, the hypothesis of constant coefficient of variation is rejected in most

states in the Corn Belt. Decreasing marginal benefit of weather partly explains why

corn yield is negatively skewed. Conditional on weather, the distribution of unexplained

residuals from our yield model is symmetric in general.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

In rain-fed agricultural regions, weather conditions have substantial impacts on crop

productivity. Favorable weather conditions for dryland crop production, including a

proper amount of heat and rainfall during the growing season, are critical factors de-

termining yield outcomes. There is a large body of existing literature on estimating

the weather impacts on crop yields. Methodologies used in most of these studies, how-

ever, are relatively restrictive. One of the objectives of this dissertation is to develop a

more realistic model to measure weather impacts on yield and to improve the estima-

tion methodology. With a better understanding of how weather factors influence crop

productivity, the estimation of the yield trend and how yield risk evolves over time will

be improved. A sound estimation of the yield trend is key to answering the question of

whether crop yields will increase enough to meet increasing feed and fuel demand. A

proper estimation of the temporal change in yield risk is critical for determining the ac-

tuarially fair rates of crop insurance programs. Understanding how crop yields respond

to weather variability provides an explanation to the long-standing puzzle of why corn

yield is negatively skewed. Motivated by these economic issues, the second goal of this

dissertation is to incorporate weather impacts into the analysis of productivity gains,

yield risk, the distribution of yield, and crop insurance rating.
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With the wide use of genetically modified seeds in recent years, claims of increased

drought resistance in corn hybrids are being made. One implication of increasing drought

tolerance would be that U.S. crop insurance rates are too high, because most crop in-

surance rating methods are based on the assumption that the coefficient of variation

of yields is constant over time. Such an assumption would be difficult to defend if the

degree of drought tolerance is changing because drought is the primary source of loss in

the U.S. crop insurance program. Attempts have been made to modify this assumption

by measuring changes in yield variance over time without controlling for weather condi-

tions. A drawback of relying solely on yield realizations is that the temporal incidence of

drought could be determining whether the coefficient of variation of yields has increased

or decreased over time because the distribution of major U.S. droughts is not constant

over time in any region. In testing the hypothesis of increasing drought tolerance we

avoid possible spurious correlation by controlling for the incidence of drought over time

and space. We construct an objective measure of drought severity and regress corn yield

on time, the drought measure, and the interaction term between the two. Based on the

estimated change in drought tolerance, we suggest a modification to the assumptions and

methods that underlie current crop insurance rates. We demonstrate that such modi-

fications could lead to substantial reductions in both corn and soybean crop insurance

rates. This topic is the focus of one of the following chapters.

Another chapter is devoted to improving the estimation of weather impacts, in at

least three aspects. First, the nonlinear impacts of rainfall and temperature are sepa-

rately modeled in a linear-spline model with endogenous thresholds. This improves upon

the existing literature, most of which makes the restrictive assumption that crop yields

are either linear or quadratic in weather variables. Our model reflects the concept of
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‘growing degree days’ in the sense that the marginal effect of weather variables should

be allowed to vary across different weather conditions. Further, the thresholds that di-

vide the weather conditions are estimated rather than fixed as in the ‘growing degree

days’ approach. Second, jointly estimated with weather effects is a linear trend with a

random county effect and a fixed effect that varies across crop reporting districts. Pre-

vious studies of weather impacts lack the careful modeling of potentially different yield

trends across regions. Third, a sampling-based Bayesian estimation procedure is devel-

oped to estimate the linear-spline model with a hierarchical structure. The complexity

in estimation that usually comes with the nonlinearity is circumvented in the Bayesian

estimation framework because the Markov chain Monte Carlo (MCMC) simulation works

with conditional distributions and the model is linear conditional on thresholds.

Despite a growing interest in estimating the impact of weather on crop yields, weather

factors are seldom modeled in estimating yield trend, yield risk, and distribution of corn

yield. There are a few studies that estimate the extent to which estimates of trend and

the variance of corn yield would be biased if weather impacts are not taken into account.

While the negative skewness of the distribution of corn yield is widely acknowledged,

only a couple of studies offer theoretical explanations. There has been no attempt so far

to empirically link the negative skewness of corn yield to how weather influences yield

outcomes. In this dissertation, a chapter is devoted to estimate the impact of weather

and relate it to estimation of trend, variance, and distribution of corn yields.

1.2 Organization of the Dissertation

This dissertation is organized into five chapters. The current chapter presents a gen-

eral introduction to the chapters that follow and, provides an outline for the organization
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of the dissertation. While the general theme of this dissertation is weather impacts on

crop yields, each chapter is meant to stand alone by addressing a specific topic.

We begin in chapter 2 by taking a look at how drought tolerance of corn and soybeans

changed over time in the U.S. We construct a drought index to measure the severity level

of the adverse weather conditions. By contrasting the yield lost to a given severity level

of drought in the 1980s and in the 2000s, we examine the change in drought tolerance

for both corn and soybeans, measured in both the absolute level of yield and as the

percentage of trend yield. Counties in Illinois and Indiana that have drought incidents

throughout the sample period are selected for a regression analysis. Absolute level of

crop yield and the log of crop yield are regressed on time, the drought index, and the

interaction term between time and the drought index. The null hypotheses that corn

and soybean yield losses due to drought have not changed over time are tested. Based

on estimated changes in how corn and soybean yields respond to dry and hot conditions,

the actuarial fair rates for the Group Risk Plan (GRP) are simulated. These rates are

compared to the insurance rates that assume the percentage yield looses are constant

over time.

Chapter 3 turns to improve the estimation methodology of measuring how temper-

ature and rainfall affect corn yields. A flexible linear-spline model with endogenous

thresholds is set up to capture nonlinear and asymmetric weather impacts. A hierarchi-

cal structure is applied to model the county-specific constant term and the CRD-specific

slope of the linear time trend. With prior and likelihood specifications, the conditional

posterior distributions are derived. A procedure is developed to simulate the Markov

chain Monte Carlo for each model parameter by applying the Gibbs sampling and the

Metropolis-Hastings algorithm. The threshold parameters and other model parameters



www.manaraa.com

5

are simultaneously estimated using a panel data of corn yield with matching weather

data in eight corn belt states. Marginal effects of rainfall and temperature across differ-

ent weather conditions are also simulated. The estimated marginal effects as well as plots

of model predicted corn yield against rainfall and temperature indicate several features

of how weather affects corn yields. Non-linearity, concavity, and geographical clustering

are some of the features.

In chapter 4, the yield model developed in chapter 3 is applied to examine how weather

plays a role in determining yield trend, yield risk, and the distribution of yield. First,

the yield model is briefly reviewed and estimated with a simplified methodology. Second,

the effect of climate trend on yield trend is evaluated. In two examples, we calculate the

percentage bias of the yield trend estimator if weather factors are not taken into account.

Third, weather variability is related to yield risk. The hypothesis of constant coefficient

of variation is tested controlling for weather variability. Finally, the negative skewness of

corn yield distribution is explained from the perspective of weather. We relate concavity

of the yield function to skewness and support it with empirical evidence.

Finally in chapter 5, a summary and some general conclusions are presented.



www.manaraa.com

6

CHAPTER 2. ARE U.S. CORN AND SOYBEANS

BECOMING MORE DROUGHT TOLERANT?

Abstract

An objective drought index that measures the dry and hot conditions adversely af-

fecting crop yields is used in a regression analysis to test whether corn and soybeans have

become more drought tolerant. Results indicate that corn yield losses from a drought of

a given severity, whether measured in quantity terms or as a percentage of mean yield,

have decreased over time. The null hypothesis that the absolute level of soybean yield

losses due to drought has not changed cannot be rejected. But soybean yield losses in

percentage terms have decreased over time. Because drought is the primary cause of

yield loss in the U.S. crop insurance program and because U.S. crop insurance rates as-

sume that percentage yield losses are constant over time, these results indicate that U.S.

crop insurance rates in the Corn Belt are too high.

2.1 Introduction

Much effort is being devoted to increasing the drought tolerance of crops. The first

results of this effort are expected to be released soon in new corn hybrids (Agricul-

ture Online, 2009; Monsanto, 2009b). But claims of increased drought resistance in
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corn are already being made (Barrionuevo and Bradsher, 2005; Monsanto, 2009a). The

argument is that improved protection from pest damage enables corn plants to better

withstand drought conditions, thereby reducing yield losses from drought. The ma-

jor seedcorn companies (Monsanto and Dupont) convinced USDA’s Risk Management

Agency (RMA) that their triple-stack hybrids that offer protection against above and

below ground insects as well as herbicide resistance, provide lower yield risk than hybrids

that were planted in the past. Because U.S. crop insurance rates are based on past loss

experience, RMA approved lower rates for farmers who plant the new hybrids. It is not

clear if RMA approved these rates only on the basis of improved protection against pest

losses or also on the basis of lower risk of crop loss from non-pest sources of loss because

of more vigorous plants. If the new hybrids reduce yield losses due to adverse weather

conditions such as drought, then the entire basis for RMA’s rate-making procedures for

insurance products that cover farm-level yield or revenue risk need to be modified be-

cause the procedures assume that the coefficient of variation of yields is constant over

time (Woodard et al., 2008). Such an assumption would be difficult to defend if the

degree of drought tolerance is changing because drought is the primary source of loss in

the U.S. crop insurance program.

Premium rates for crop insurance products that insure against area yield losses were,

until 2009, also based on the assumption that the coefficient of variation of county yields

has not changed over time (Paulson and Babcock, 2008). Although this assumption has

been recently modified by RMA, their new procedure relies on measuring yield variance

over time without controlling for the incidence of drought. A drawback of relying solely

on yield realizations is that the temporal incidence of drought could be determining

whether the coefficient of variation of yields has increased or decreased over time because
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the distribution of major U.S. droughts is not constant over time in any region. For

example, in the Corn Belt, a severe multi-state drought has not occurred since 1988

whereas multiple droughts have occurred in Great Plains states since 2000. A model

that only looked at how crop losses have varied over time would conclude that losses

have declined in the Corn Belt but not in Great Plains states. This would then lead one

to the possibly spurious conclusion that yield risk has been declining in the Corn Belt

and increasing or staying the same in Great Plains states.

A finding of increased drought tolerance has wider implications than the accurate

rating of crop insurance. For example, the ability to meet biofuels mandates with lower

disruptions to feed supplies would be enhanced. The payoff from investment in grain

storage would likely decrease because the risk of a severe crop shortfall would fall. And,

more generally, pre-harvest price volatility would decrease because the risk of significant

crop losses would decrease.

In this study we use county yields in major corn belt states to test the hypothesis

that U.S. corn and soybeans are becoming more drought tolerant over time. Because

corn and soybeans are grown by the same managers, inclusion of both crops allows for

some insight into whether better management or better corn hybrids is responsible for

any finding that corn yields have become less susceptible to drought. In testing the

hypothesis of increasing drought tolerance we avoid spurious correlation by controlling

for the incidence of drought over time and space by constructing an objective measure of

drought severity. We measure the impact of drought on yield both in quantity (bushels)

and percentage (of mean yield) terms. Our results indicate that corn has indeed become

more drought tolerant since 1980 both in terms of bushels and percentage losses. In

contrast, soybeans has become more drought tolerant in terms of percentage of yield
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lost, but not in terms of the absolute number of bushels lost to drought. Our findings

suggest a need to modify assumptions and methods that underlie current crop insurance

rates. We demonstrate that such modifications could lead to substantial reductions in

both corn and soybean crop insurance rates.

2.2 Crop Yield and the Drought Index

In this study, we estimate the effects of drought conditions on crop yields. Abnormally

hot and dry weather in growing seasons has been shown to be detrimental to crop yields

in the U.S. Corn Belt (O’Brien et al., 1996). Hence, throughout the article drought is

treated synonymously with hot and dry conditions, rather than just dry conditions. The

data used include county-level corn and soybean yields and weather information in Iowa,

Illinois, and Indiana from 1980 to 2008.1 County-level production and planted acreage

data were collected from the National Agricultural Statistics Service (NASS) to calculate

yield per planted acre. Observations with zero production or missing acreage data were

deleted. To focus our attention on major production areas, only counties with yield data

in all years from 1980 to 2008 were included.2

Cooling degree days (CLDD) and total monthly precipitation (TPCP) data were

collected from the National Oceanic and Atmospheric Administration (NOAA). Monthly

data from June to August were summed up as a growing season total. For counties

with multiple weather stations, we took the simple averages of weather records from all

weather stations located in the county to obtain county-level weather data. For each

year, yields were matched with county-level weather data. About 20% of the counties do

1We attempted to use data back to 1960 but there were insufficient droughts in the 1960s and 1970s
to allow estimation of the change in drought tolerance over time. The criteria for data inclusion is
discussed in the following section.

2About 90% of counties have yield data in all 29 years.
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not have weather stations that kept monthly CLDD or TPCP data. We exclude these

counties from our sample.

2.2.1 Drought Index

We constructed our drought index from county-level rainfall and temperature data.

The index captures the presence of both unusually hot and unusually dry conditions.

Severity of hotness (dryness) can be measured by the degree to which temperature (rain-

fall) departs from the historical normal. The product of the number of standard devia-

tions that the temperature measure reaches above the mean and the rainfall measure falls

below the mean reflects the dual impacts of hotness and dryness. The higher (lower) the

temperature (rainfall) measure is above (below) the mean, the larger will be the resulting

drought index. Formally, the drought index (DI) is defined as

DIi,t = [−max(0, CLDDStand
i,t )]× [min(0, TPCP Stand

i,t )]. (2.1)

Subscripts i and t denote county and year. Both CLDD3 and TPCP are standardized by

subtracting county means from each observation and then dividing by the county-level

standard deviations. The standardizing procedure scales the drought index so that it is

comparable across counties and over time.4

Standardized cooling degree days and precipitation deviates measure the degree of

hotness and dryness. Any mathematical operation of the two standardized weather

deviates that strictly increases in each of them could serve as a drought index. The mul-

3CLDD sums up degrees above 65◦F on a daily basis. It measures the accumulative heat at the right
tail of the distribution. We also experimented with drought indices calculated from two other weather
measures the number of days with greater than or equal to 0.1 inches precipitation and monthly mean
temperature. They give similar regression results.

4To eliminate the possibility that county means might be distorted by extreme values in the sample,
we replaced simple county means with spatially smoothed county means. This spatial smoothing had
minimal impacts on the results.



www.manaraa.com

11

tiplicative relationship that we use is among the simplest forms and tends to emphasize

more significant droughts in the regression analysis.5

There are three advantages associated with this drought index. First, it is constructed

from county-level weather data, which, compared with state- or country-level aggregates,

contains localized weather information more relevant to county yields. Second, this in-

dex provides information on the top two yield loss causes for corn and soybeans in the

Corn Belt - excess heat and lack of moisture. A single index instead of multiple weather

variables provides an easy way to assess the impact of the main weather factors. Finally,

as expected, the drought index is correlated with yield deviations, and it also identifies

major drought years. To illustrate, figure 2.1 plots relative corn yield deviations against

the drought index for counties in Illinois in major drought years: 1983, 1988, 1991, 2002,

and 2005.6 Clearly the data in figure 2.1 exhibit both a strong negative relationship

between yield deviation and the level of the drought index as well as substantial sam-

pling error. One source of sampling error is that soil moisture prior to drought is not

incorporated because of lack of data. Under the same severity of drought, crop yields

in counties with higher pre-drought soil moisture levels are likely to incur smaller yield

losses.

5We constructed an alternative drought index based on the sum rather than the product of stan-
dardized weather deviates. Scatter plots of relative yield deviation against alternative drought indices
suggest that our choice of the drought index better represents the harmful impact of weather on crop
yields. Estimation results and overall conclusions based on the alternative drought index are similar to
results presented here.

6Relative yield deviation is defined as actual county yield minus county trend yield, which is then
divided by county trend yield.
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Figure 2.1: Relationship between the drought index and relative corn yield deviation

2.2.2 Data Selection

Corn and soybean yields in Iowa, Illinois, and Indiana are matched with drought

indices representing growing season dry/hot conditions in the same county and year of

the crop yield. The drought index ranges from zero to five, with zero representing growing

season temperature lower than average and/or rainfall greater than average. Table 2.1

shows the distribution of droughts of different severity levels across states and in each

decade. Note that incidents of severe droughts decreased substantially in the 1990s and

the 2000s relative to the 1980s in all three states. In Iowa, the number of county droughts

with a drought index between 1 and 2 in the 1980s is almost 50% greater than the number

of droughts from 1990 to 2008. There has been only one drought with a drought index

greater than 2 since 1990 in Iowa.
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Table 2.1: Distribution of Drought across States and in Each Decade

Period DI ∈ (0.1, 1] (1, 2] (2, 3] (3, 4] (4, 5] (5, 6]

Illinois

1980-1989 104 46 33 20 3 1

1990-1999 85 44 7 0 0 0

2000-2008 110 42 10 1 1 0

Indiana

1980-1989 78 37 43 14 4 1

1990-1999 94 48 10 2 0 0

2000-2008 52 35 17 2 0 0

Iowa

1980-1989 128 62 47 30 6 0

1990-1999 133 30 0 0 0 0

2000-2008 203 13 1 0 0 0

11 CRDs in IL and IN

1980-1989 125 59 46 22 2 0

1990-1999 120 63 12 2 0 0

2000-2008 96 61 25 3 1 0

To accurately measure whether there has been an increase in drought tolerance over

time in a region requires observations of yields in drought years throughout the sample

period. We would not be able to quantify change of drought tolerance otherwise. Thus,

for the analysis presented in the following sections, we keep only those counties in crop



www.manaraa.com

14

reporting districts (CRDs)7 that have at least two drought incidents with an index larger

than 2.0 or at least three drought incidents with an index larger than 1.5 since 2000.

These selection criteria leave us with counties in five CRDs in Indiana and six CRDs

in Illinois. The total number of counties in the sample is 98. Note that we do not

include any Iowa counties in the analysis because there simply have not been any serious

droughts in Iowa since 1990.8

A histogram of drought indices in the 11 CRDs is presented in figure 2.2. Figure 2.2

indicates that there were only a few droughts of magnitude between 3 and 4 and a small

number of droughts of magnitude between 4 and 5. The bottom part of table 2.1 suggests

that the 11 CRDs used for regression have a more balanced distribution of droughts over

the decades, compared with the overall sample. Still, there were fewer drought incidents

of magnitude between 3 and 4 after 1990: 22 out of 27 droughts of magnitude between 3

and 4 occurred in the 1980s. A limited number of droughts of magnitude greater than 3

combined with an uneven temporal distribution of droughts of magnitude between 3 and

4 imply that we need to be cautious about interpreting model estimation and prediction

for droughts of magnitude larger than 3 in the analysis that follows.

7Crop reporting districts are aggregates of counties used by NASS.
8We considered starting the series in 1960. The problem with extending the series further back in

time was that there were no major droughts during 1960-1979 in Illinois or Indiana, and only a few
droughts of this severity in Iowa that occurred in the 1970s. However, there were no major droughts in
Iowa after 2000. There is no crop reporting district that had at least two drought incidents with DI > 2
or at least three drought incidents with DI > 1.5 during 2000-2008 and also in the pre-1980 period.
Thus, we start our sample series from 1980.
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Figure 2.2: Histogram of drought indices in the 11 CRDs in IL and IN truncated below

0.1

2.3 Drought Tolerance and Yield Risk

There are different approaches that could be taken to see if there has been an increase

in drought tolerance over time using the crop yield data and matched drought indices.

One way is to compare yield losses in drought years in the first decade with yield losses

in the last decade for droughts of similar magnitude. We classify droughts into categories

of degrees of severity according to indices falling within 0.5-width ranges (0, .5], (.5, 1],...,

(3.5, 4], (4, 4.5].9 Mean yield losses across counties in each drought category from 1980

to 1989 are compared to mean yield losses in the corresponding category from 2000 to

2008. Figure 2.3 shows bar charts of crop losses in each drought category with the mean

of drought indices in each category on the x-axis and mean of crop losses on the y-axis.

As shown, in most drought categories, corn yield losses measured in both bushels per

9The upper limit of the range is 4.5 because there were no droughts of magnitude larger than 4.5 in
the last decade.
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acre and in percentage of mean yield declined in 2000-2008 compared with the 1980s.

Corn yield losses increased when very severe droughts occurred (when the drought index

falls into ranges (3,3.5] and (4,4.5]). However, as pointed out in the previous section,

caution should be used in drawing conclusions about yield reductions when the drought

index reaches beyond 3. In general, data suggests that corn yields have indeed become

less susceptible to the effects of drought. The situation for soybeans seems less strong.

No clear-cut conclusion can be drawn regarding changes in losses in soybean bushels.

Soybean percentage losses decreased in the latter period, but to a lesser degree than did

corn.
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Figure 2.3: Crop losses and drought indices

The bar charts in figure 2.3 also show that the relationship between crop losses and

the drought index is probably non-linear. The marginal impact of drought on yield seems

to decline with drought severity. This pattern suggests inclusion of a quadratic term of

the drought index in the regression equation of crop yield that follows.



www.manaraa.com

17

2.3.1 Modeling Crop Yield with the Drought Index

The nonparametric results presented in figure 2.3 indicate that drought tolerance has

increased for corn and perhaps for soybeans. We now turn to regression analysis to test

this hypothesis and to obtain estimates of the magnitude of any effect. The model we

use is a fixed-effects regression model using the panel of data consisting of county yields

and matching county-level drought indices. The first regression equation we specify is as

follows:

Yi,t = βcons+αi+
R∑
r=1

γr(CRDr×T )+βdiDIi,t+βditDITi,t+βdisqDISQi,t+βdisqtDISQTi,t+εi,t.

(2.2)

Subscripts t, i, and r denote time, county, and crop reporting districts, respectively. Y

denotes crop yield. T is a trend variable, which takes values 0 to 28 for years 1980

to 2008. DI is the drought index. DIT , DISQ, and DISQT are variables defined

as follows: DIT = DI × T , DISQ = DI × DI, DISQT = DI × DI × T . CRDr,

r = 1, 2, ..., R, denote regional dummy variables. R is the number of crop reporting

districts. CRDr = 1, if the yield observation is from crop reporting district r, and

CRDr = 0 otherwise. αi is the county-level fixed-effect parameter. Without constraints,

the fixed-effect parameter αi and the coefficient of a time-invariant variable (the constant

term) βcons are not identified. Without loss of generality, we assume that
∑

i αi = 0. In

this case, βcons is the average intercept term, with αi being each county’s departure from

the average. As usual, the error term εi,t is assumed to be mean zero over i and t. α, β,

and γ are parameters to be estimated.

The yield regression model specified in (2.2) assumes a linear trend and explicitly

accounts for the impact of drought. Crop yield consists of three parts: a deterministic

trend yield (βcons + αi +
∑R

r=1 γr(CRDr × T )), a drought-driven deviation (βdiDIi,t +
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βditDITi,t + βdisqDISQi,t + βdisqtDISQTi,t), and the residual εi,t. The linear trend has

a county-specific intercept term (βcons + αi) and a slope (
∑R

r=1 γrCRDr), which varies

across crop reporting districts. Counties located in crop reporting district z have a

common trend slope γz, which differs from counties in another crop reporting district,

say w, their trend slope being γw. The drought-driven deviation component depends

on the drought index, a quadratic term of the drought index and time. Including the

quadratic terms DISQ and DISQT makes the model more flexible in that marginal

effects of drought could vary for different drought severities. The interaction terms

DIT and DISQT capture possible changes in drought impact over time. Since drought

incidents are random, the drought-driven deviation allows us to explicitly estimate a

part of yield risk that is caused by adverse weather. Other random factors are modeled

by the residual term εi,t. This specification allows for a straightforward test of whether

yield loss measured in bushels per acre has varied over time.

The second regression model includes an exponential trend:

ln(Yi,t) = bcons+ai+
R∑
r=1

cr(CRDr×T )+bdiDIi,t+bditDITi,t+bdisqDISQi,t+bdisqtDISQTi,t+ei,t.

(2.3)

The regression equation (2.3) appears in a log-linear form with the same right-hand

side as in the linear model (2.2). The log-linear model has a percentage change in crop

yield on the left-hand side. Here, a’s, b’s, and c’s are parameters to be estimated. This

specification allows for a straightforward test of whether percentage yield loss due to

drought has changed over time.

In models (2.2) and (2.3), parameters to characterize crop drought tolerance, βdi, βdit,

βdisq, βdisqt, bdi, bdit, bdisq, bdisqt, are not region specific. We can allow these parameters

to vary across CRDs by introducing products of regional dummies and the drought
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measures just as we did with the trend slope in equations (2.2) and (2.3). Specifically,

CRD-specific models are

Yi,t = βcons + αi +
R∑
r=1

γr(CRDr × T )

+
R∑
r=1

βrdi(CRDr ×DIi,t) +
R∑
r=1

βrdit(CRDr ×DITi,t)

+
R∑
r=1

βrdisq(CRDr ×DISQi,t) +
R∑
r=1

βrdisqt(CRDr ×DISQTi,t) + εi,t (2.4)

ln(Yi,t) = bcons + ai +
R∑
r=1

cr(CRDr × T )

+
R∑
r=1

brdi(CRDr ×DIi,t) +
R∑
r=1

brdit(CRDr ×DITi,t)

+
R∑
r=1

brdisq(CRDr ×DISQi,t) +
R∑
r=1

brdisqt(CRDr ×DISQTi,t) + ei,t.(2.5)

In this case, all coefficients are CRD specific. The estimated coefficients in (2.4) and

(2.5) are the same with what we would get by repeatedly regressing (2.2) and (2.3) using

subsamples of each CRD. The benefit of estimating (2.4) and (2.5) instead of CRD-by-

CRD regressions is that we can perform F-tests to see if there are regional differences in

how drought has affected yield over time.

The fixed-effect model is chosen over pooled OLS and random-effect models for two

reasons. First, omitted time-invariant, county-specific factors that influence crop yield

can be captured by the fixed-effect parameters αi. Second, αi parameters differ among

units, but for any particular unit, their value is constant in the fixed-effect model. Esti-

mates of α’s are of interest to us, particularly in estimating trend yields for each county.

The residual term, a proxy of all other yield risks, could be heteroskedastic among

counties and over time. If the residual is heteroskedastic, estimated β’s are consistent

but their standard errors are underestimated. To test heteroskedasticity in a fixed-effect
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model setting, a modified Wald test is performed after regression (Greene, 2000). The

null hypothesis that variance of residuals in all counties are equal is rejected at the

1% significance level. As suggested by Arellano (1987), a Huber/White/sandwich type

variance matrix estimator of β̂ is used in the context of a fixed-effect model (which

Arellano called the within-group model) to obtain robust standard errors. The sandwich

estimator is valid in the presence of any heteroskedasticity or serial correlation in the

error term, provided T is small relative to N (Wooldridge, 2002).10

2.3.2 Impact of Drought

The aggregate regression models (2.2) and (2.3) as well as the CRD-specific regression

models (2.4) and (2.5) explicitly account for the impact of drought on crop yield. With

some derivation, marginal effects of drought as well as change in the crop losses from

drought over time can be expressed as functions of model parameters. These expressions

are derived for the aggregate models. Expressions for CRD-specific models follow by

replacing the drought parameters with CRD-specific parameters.

For the linear regression model, the impact of drought on yield per acre is simply

Drought Impact ≡ βdiDIi,t + βditDITi,t + βdisqDISQi,t + βdisqtDISQTi,t. (2.6)

If we constructed our drought index correctly, then the impact of drought on crop yields

as defined in (2.6) should be negative. The change in drought impact over time is

∂Drought Impact

∂T
= βditDIi,t + βdisqtDIi,t ×DIi,t. (2.7)

For a given level of drought severity, the partial derivative of drought impact with respect

to time in (2.7) will be negative if yield loss from a drought of a given severity increases

10In our case, T equals 29, and N equals 98.
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over time. If yields are becoming less susceptible to drought when the yield loss is

measured in bushels, then (2.7) will be positive.

We could also use the linear specification (2.2) to test whether the percentage yield

loss is increasing or decreasing over time, but the test statistics for testing this hypothesis

are much more straightforward using the log-linear specification (2.3). The percentage

change in yield with respect to the drought index is simply

MErelative =
∂ ln(Y )

∂DI
= (bdi + 2bdisq ×DIi,t) + (bdit + 2bdisqt ×DIi,t)× T (2.8)

and the change in drought susceptibility over time is simply (bditDIi,t+bdisqtDIi,t×DIi,t).

2.3.3 Estimation Results

We estimate yield regression models (2.2), (2.3), (2.4), and (2.5) using panel data of

corn and soybean county yields, together with county-level drought indices. Table 2.2

provides point estimates of the CRD-specific trend coefficients γr. It is interesting to

note that estimated yield growth rates for corn are uniformly higher than soybeans in

Illinois but in Indiana, yield growth rates for the two crops are quite close.

Table 2.3 provides point estimates and robust standard errors (in parenthesis) of

the CRD-invariant coefficients in the aggregate models (2.2) and (2.3). Columns 2 and

3 in table 2.3 provide estimated drought parameters for the linear model. The βdi’s

are negative and significant for both corn and soybeans, which means that the drought

index indeed captures the adverse effect of drought on yield. The βdisq’s are positive and

significant for both crops, which means that marginal yield losses decline with drought

severity. βdit is positive and significant for corn, which implies that corn is less susceptible

to minor droughts in terms of bushels lost over time. βdisqt is negative for corn, implying

that over time, losses in corn bushels under severe droughts are not reduced as much as



www.manaraa.com

22

under minor droughts. βdit and βdisqt for soybeans are both insignificant. This means

that in bushel terms, there is no evidence that drought susceptibility of soybeans has

changed in the past 28 years.

Table 2.2: CRD-Specific Trend Estimates γr’s from Aggregate Models

State District Corn Linear Soybean Linear Corn

Log-Linear

Soybean

Log-Linear

IL 10 2.295 * 0.350 * 0.016 * 0.007 *

IL 20 1.872 * 0.288 * 0.013 * 0.007 *

IL 40 2.246 * 0.422 * 0.015 * 0.009 *

IL 70 1.827 * 0.504 * 0.017 * 0.014 *

IL 80 1.665 * 0.369 * 0.016 * 0.011 *

IL 90 1.431 * 0.388 * 0.014 * 0.012 *

IN 10 1.832 * 0.471 * 0.014 * 0.011 *

IN 50 1.494 * 0.438 * 0.010 * 0.010 *

IN 60 1.549 * 0.505 * 0.012 * 0.012 *

IN 70 1.749 * 0.517 * 0.013 * 0.014 *

IN 80 1.239 * 0.517 * 0.011 * 0.014 *

Note: Asterisk (*) denotes estimates significant at 5%.

Columns 4 and 5 in table 2.3 provide estimated drought parameters for the log-linear

model. The bdi’s are negative and significant for both crops as expected. The bdisq’s

are positive and significant for both crops, which means marginal percentage losses are

higher under minor droughts and lower under severe droughts. The bdit’s are significant

and positive for both crops. Both corn and soybeans are becoming less susceptible to
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minor droughts in percentage terms. bdisqt is significant and negative for corn, implying

that percentage corn yield losses are not decreasing as much under severe droughts

as under minor droughts over time. bdisqt is insignificant for soybeans implying that

improvement of soybean drought tolerance measured in percentage terms is similar under

minor droughts compared to severe droughts.

Table 2.3: Point Estimates and Robust Standard Errors of CRD-Invariant Coefficients

Corn Linear Soybean Linear Corn Log-Linear Soybean Log-Linear

DI -40.6124 * -5.7361 * -0.5023 * -0.2157 *

( 2.5117 ) ( 0.6667 ) ( 0.0369 ) ( 0.0251 )

DIT 0.6886 * 0.0069 0.0143 * 0.0035 *

( 0.1480 ) ( 0.0417 ) ( 0.0018 ) ( 0.0013 )

DISQ 7.2940 * 0.7048 * 0.0914 * 0.0322 *

( 0.9451 ) ( 0.2531 ) ( 0.0133 ) ( 0.0095 )

DISQT -0.2050 * -0.0033 -0.0037 * -0.0009

( 0.0539 ) ( 0.0154 ) ( 0.0007 ) ( 0.0005 )

Constant 104.6338 * 34.4129 * 4.6500 * 3.5316 *

( 0.4362 ) ( 0.1301 ) ( 0.0042 ) ( 0.0040 )

Note: Asterisk (*) denotes estimates significant at 5%.

The regression results have important implications because drought risk is an im-

portant source of yield losses. Our regression models explicitly estimate crops’ ability

to withstand drought. If the distribution of drought remains constant over time, then

changes in drought tolerance translate directly into changes in yield risk. An increasing

(decreasing) drought tolerance results in decreasing (increasing) drought-induced yield
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risk. Based on regression results, one can test the null hypothesis that absolute (relative)

yield risk induced by drought is constant over time.

Based on the linear model, the null hypothesis that absolute yield risk induced by

drought is constant over time is equivalent to the annual change in bushels lost to drought

being zero:

H0 : βditDI + βdisqtDI ×DI = 0. (2.9)

Based on the log-linear model, the null hypothesis of constant relative yield risk

induced by drought is equivalent to the annual change in percentage yield losses being

zero:

H0 : bditDI + bdisqtDI ×DI = 0. (2.10)

Table 2.4 provides t-statistics and p-values for these hypothesis tests. For corn, the

null hypothesis that yield losses have not changed over time is rejected in favor of the

alternative hypothesis that yield losses have declined over time. This conclusion holds

whether yield loss is measured in bushels per acre or as a percentage of mean yields.

For soybeans, the null hypothesis that yield losses measured in bushels per acre are

constant over time cannot be rejected. However, the null hypothesis that percentage

yield losses have not changed over time is rejected in favor of the alternative hypothesis

that percentage yield losses have decreased over time.
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Table 2.4: Hypothesis Test Results

Crop H0 Test statistics P-value Implications

Drought Index Evaluated at 1

Corn βditDI + βdisqtDI ×DI = 0 t(95) = 4.88 .000 CAR rejected,

in favor of DAR

Corn bditDI + bdisqtDI ×DI = 0 t(95) = 8.90 .000 CRR rejected,

in favor of DRR

Soybean βditDI + βdisqtDI ×DI = 0 t(95) = 0.13 .897 Fail to reject CAR

Soybean bditDI + bdisqtDI ×DI = 0 t(95) = 3.03 .003 CRR rejected,

in favor of DRR

Drought Index Evaluated at 2.5

Corn βditDI + βdisqtDI ×DI = 0 t(95) = 3.44 .001 CAR rejected,

in favor of DAR

Corn bditDI + bdisqtDI ×DI = 0 t(95) = 9.07 .000 CRR rejected,

in favor of DRR

Soybean βditDI + βdisqtDI ×DI = 0 t(95) = -0.08 .933 Fail to reject CAR

Soybean bditDI + bdisqtDI ×DI = 0 t(95) = 2.36 .021 CRR rejected,

in favor of DRR

Note: The only yield risk considered here is the drought-induced risk.

CAR, DAR, CRR and DRR denote respectively constant absolute risk,

decreasing absolute risk, constant relative risk and decreasing relative risk.

Based on model estimates, the marginal effects of drought evaluated at drought index

level 1.0 (an average drought severity level) and their standard errors are listed in table

2.5. The marginal effect on corn yield was 26 bushels per acre or 32% in 1980 and 18

bushels per acre or 12% in 2008. Standard errors are about one bushel per acre or 1%.
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The marginal impact on soybean yield was four bushels per acre in both 1980 and 2008.

But because expected yields have increased over time, the marginal effect measured in

percentage terms was 15% in 1980 and 10% in 2008, with about 1% standard error.

Table 2.5: Marginal Effects with Drought Index Evaluated at DI = 1

Year 1980 1985 1990 1995 2000 2005 2008

Corn Loss 26.02 24.63 23.24 21.85 20.45 19.06 18.23

(bushels) (0.85) (0.63) (0.49) (0.51) (0.68) (0.92) (1.08)

Soybean Loss 4.33 4.32 4.32 4.32 4.32 4.32 4.32

(bushels) (0.25) (0.19) (0.16) (0.18) (0.23) (0.30) (0.34)

Corn Loss 32.0% 28.5% 25.0% 21.5% 18.0% 14.5% 12.4%

(%) Log-Linear (1.3) (1.0) (0.8) (0.7) (0.7) (0.9) (1.1)

Soybean Loss 15.1% 14.3% 13.5% 12.6% 11.8% 11.0% 10.5%

(%) Log-Linear (0.9) (0.7) (0.6) (0.6) (0.8) (0.9) (1.1)

Note: Standard errors of the predictions are in parenthesis.

Table 2.6 provides point estimates and standard errors of the predicted change in

annual yield losses due to droughts of different severities. Numbers in the last two

columns need to be interpreted with caution because of the large standard errors, caused

by too few observations in our sample that have a drought index greater than 3. Within

the range of the drought index that we have adequate data, model predictions are as

follows. Corn yield losses due to drought have decreased on an annual basis by between

0.22 bushels to 0.57 bushels, or by between 0.63% to 1.4% each year, depending on

drought severity. Estimated percentage soybean losses have decreased at a rate ranging

from 0.15% per year to 0.33% per year. Although these annual changes may seem
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moderate, the magnitude is large when we consider the accumulated change over time.

Figure 2.4 shows crop yield loss in 1980 and in 2008 under alternative drought severities.

In 29 years, corn yield lost to drought is estimated to have decreased by about 15 bushels

under moderate droughts. Accounting for the increase in trend yield, the reduction in

the percent loss in corn yields over the 29 years ranges from nearly 20 percentage points

when the drought index is 0.5 to nearly 40 percentage points when the drought index

is 2. Soybeans lost as many bushels to drought in 2008 as in 1980. In relative terms,

however, the reduction in soybean losses was about 5 to 10 percentage points from 1980

to 2008. All theses predicted values are statistically different from zero.

Table 2.6: Annual Change in Crop Losses at Alternative Drought Severity Levels

Drought Index 0.5 1 1.5 2 2.5 3 3.5 4

Annual Decrease in 0.29 0.48 0.57 0.56 0.44 0.22 -0.10 -0.53

Corn Bushel Loss (0.06) (0.10) (0.12) (0.12) (0.13) (0.17) (0.25) (0.37)

Annual Decrease in 0.63% 1.07% 1.32% 1.40% 1.29% 0.99% 0.52% -0.15%

Corn Percent Loss (0.08) (0.12) (0.14) (0.14) (0.14) (0.20) (0.31) (0.46)

Annual Decrease in 0.00 0.00 0.00 0.00 0.00 -0.01 -0.02 -0.03

Soybean Bushel Loss (0.02) (0.03) (0.03) (0.04) (0.04) (0.05) (0.08) (0.11)

Annual Decrease in 0.15% 0.26% 0.32% 0.33% 0.30% 0.22% 0.10% -0.06%

Soybean Percent Loss (0.05) (0.08) (0.10) (0.11) (0.13) (0.18) (0.27) (0.40)

Note: Standard errors of the predictions are in parenthesis.
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Figure 2.4: Model-predicted drought-induced crop losses

To estimate possible CRD-specific drought effects, we also fit models (2.4) and (2.5)

with the same panel data. Tables 2.7 and 2.8 provide point estimates of coefficients in

the CRD-specific models. Note that, in general, the signs of the CRD-specific drought

parameters match their counterparts in the aggregate models in table 2.3. For those

drought parameters that are estimated to be significant in the aggregate model, estimates

in the CRD-specific models are either significant with the same sign or insignificant.

For the drought parameters estimated to be insignificant in the aggregate model, their

estimates could take both positive and negative signs or be estimated as insignificant

in the CRD-specific model. There is only one exception: brdit for soybeans in Indiana

district 80 has a different sign than bdit in the aggregate model.
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Table 2.7: Point Estimates of Coefficients from CRD-Specific Models

State District Corn Linear Soybean Linear
Corn

Log-Linear

Soybean

Log-Linear

Intercept βcons

104.8900 * 34.4730 * 4.6546 * 3.5346 *

Trend Parameter γr’s

IL 10 2.3497 * 0.3393 * 0.0163 * 0.0073 *

IL 20 1.9057 * 0.2593 * 0.0137 * 0.0059 *

IL 40 2.2673 * 0.3512 * 0.0156 * 0.0077 *

IL 70 1.7078 * 0.4542 * 0.0137 * 0.0118 *

IL 80 1.7893 * 0.4427 * 0.0159 * 0.0129 *

IL 90 1.3869 * 0.4228 * 0.0127 * 0.0123 *

IN 10 1.8550 * 0.4462 * 0.0149 * 0.0108 *

IN 50 1.4532 * 0.4700 * 0.0106 * 0.0105 *

IN 60 1.6304 * 0.5142 * 0.0129 * 0.0126 *

IN 70 1.5527 * 0.5034 * 0.0120 * 0.0129 *

IN 80 1.3339 * 0.5687 * 0.0113 * 0.0154 *

Drought Parameter βrdi’s or brdi’s

IL 10 -24.5300 * 0.4016 -0.2606 * 0.0172

IL 20 -34.0760 * -4.9898 * -0.3283 * -0.1301 *

IL 40 -40.7260 * -12.9590 * -0.3920 * -0.3341 *

IL 70 -59.4110 * -12.3450 * -0.9352 * -0.5076 *

IL 80 -41.5350 * -5.0797 * -0.6349 * -0.2331 *

IL 90 -70.7350 * -11.7250 * -1.0575 * -0.5999 *

IN 10 -31.9900 * -7.4177 * -0.3498 * -0.2057 *

IN 50 -52.2970 * -2.1596 -0.4980 * -0.0742

IN 60 -32.3670 * -4.9152 * -0.3898 * -0.1710 *

IN 70 -55.1150 * -8.6409 * -0.5406 * -0.3005 *

IN 80 -38.4830 * -6.1125 * -0.5203 * -0.2636 *

Drought Parameter βrdit’s or brdit’s

IL 10 0.0001 0.1004 0.0071 0.0029

IL 20 -0.1662 0.1039 0.0032 0.0035

IL 40 0.7263 0.8731 * 0.0143 * 0.0233 *

IL 70 1.0383 * 0.1975 0.0300 * 0.0135 *

IL 80 0.3805 -0.3754 * 0.0149 -0.0083

IL 90 2.0711 * 0.0090 0.0367 * 0.0109 *

IN 10 0.5336 0.4464 * 0.0087 * 0.0130 *

IN 50 1.4237 * -0.2868 * 0.0153 * -0.0050

IN 60 -0.0079 -0.1520 * 0.0068 * -0.0012

IN 70 2.3829 * 0.0501 0.0233 * 0.0046 *

IN 80 0.0817 -0.3908 * 0.0088 * -0.0054 *

Note: Asterisk (*) denotes estimates significant at 5%.
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Table 2.8: Point Estimates of Coefficients from CRD-Specific Models - Continued

State District Corn Linear Soybean Linear
Corn

Log-Linear

Soybean

Log-Linear

Drought Parameter βrdisq’s or brdisq’s

IL 10 2.1321 -1.1129 0.0146 -0.0343

IL 20 2.8345 -0.3560 -0.0024 -0.0234

IL 40 7.9223 * 3.5543 * 0.0701 * 0.0868 *

IL 70 12.1130 * 2.2724 * 0.2197 * 0.1045 *

IL 80 9.7572 * 0.9630 0.1490 * 0.0466

IL 90 29.7610 * 5.1016 * 0.4591 * 0.2774 *

IN 10 4.7221 * 1.8526 * 0.0449 * 0.0441 *

IN 50 12.0790 * -0.3684 0.1042 * -0.0071

IN 60 5.0586 * 0.2324 0.0639 * 0.0099

IN 70 12.9670 * 1.7575 * 0.1057 * 0.0567 *

IN 80 7.5398 * 1.3834 * 0.0955 * 0.0598 *

Drought Parameter βrdisqt’s or brdisqt’s

IL 10 -0.0557 -0.0478 -0.0024 -0.0013

IL 20 0.2159 0.0239 0.0020 0.0010

IL 40 -0.4393 -0.4086 * -0.0066 * -0.0107 *

IL 70 -0.1007 -0.0051 -0.0067 * -0.0022

IL 80 -0.1680 0.1393 * -0.0052 0.0035

IL 90 -1.2272 * -0.1383 -0.0197 * -0.0098 *

IN 10 -0.1981 -0.2277 * -0.0021 -0.0060 *

IN 50 -0.4712 * 0.1074 -0.0038 * 0.0023

IN 60 -0.0228 0.0452 * -0.0017 0.0008 *

IN 70 -0.8042 * -0.0103 -0.0066 * -0.0007

IN 80 -0.0680 0.1157 * -0.0024 * 0.0018 *

Note: Asterisk (*) denotes estimates significant at 5%.
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Based on the CRD-specific estimates, we get similar results of annual changes in

drought tolerance as from the aggregate models. Drought tolerance of corn measured in

bushels per acre improved in four CRDs and showed no statistically significant changes

in the other seven CRDs. Measured in relative terms, corn crops in all 11 CRDs are

becoming less susceptible to drought over time. Measured in bushels per acre, soybean

crops in four CRDs are becoming more drought tolerant, soybean crops in five CRDs are

becoming less drought tolerant and soybean crops in the remaining two CRDs showed

no significant changes. Measured in relative terms, soybean crops in five CRDs are

more drought tolerant, the soybean crops in only one CRD is becoming more susceptible

to drought, and the rest did not show significant changes. Thus, we can think of the

aggregate estimation as the “average” of the CRD-specific estimation.

The magnitude of the CRD-specific estimates varies across regions. Table 2.9 shows

that F-tests of the null hypothesis that CRD-specific drought parameters in the CRD-

specific model are equal is rejected. This suggests that corn and soybean yields in

different CRDs could respond differently to droughts. The differences could be due to

the variability in pre-drought soil moisture and that the CRD-specific parameters were

estimated using too few observations. It is likely that pre-drought soil moisture differs

across CRDs. Thus droughts of similar severity levels could lead to different degrees of

crop losses in different CRDs. However, we lack the pre-drought soil moisture data to ac-

count for the differences. Also, the CRD-specific regressions use only information within

a CRD to estimate drought parameters for that CRD. Few observations in some CRDs

used could lead to large standard errors in the estimated coefficients of the CRD-specific

drought parameters. Rather than an actual finding of no change in drought tolerance,

we could have insignificant estimates from a lack of data. Even the significant esti-
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mates could suffer from lack of precision. As shown in table 2.10, the aggregate models

have smaller (better) Bayesian information criterion (BIC) values than do corresponding

CRD-specific models. This suggests that the CRD-specific models are relatively overfit-

ting. For these reasons, and because the aggregate model results essentially represent the

average of the CRD-specific model results, we rely on results of the aggregate models.

Table 2.9: F-test of Equal Coefficients

Model H0 F Statistics p-value Conclusion

Corn βrdi ’s equal F(10,95)=4.58 0 reject

Linear βrdit’s equal F(10,95)=7.51 0 reject

βrdisq’s equal F(10,95)=4.57 0 reject

βrdisqt’s equal F(10,95)=6.25 0 reject

Corn brdi ’s equal F(10,95)=7.21 0 reject

Log-Linear brdit’s equal F(10,95)=7.12 0 reject

brdisq’s equal F(10,95)=6.12 0 reject

brdisqt’s equal F(10,95)=6.42 0 reject

Soybean βrdi ’s equal F(10,95)=6.14 0 reject

Linear βrdit’s equal F(10,95)=16.62 0 reject

βrdisq’s equal F(10,95)=5.82 0 reject

βrdisqt’s equal F(10,95)=11.88 0 reject

Soybean brdi ’s equal F(10,95)=8.22 0 reject

Log- Linear brdit’s equal F(10,95)=10.45 0 reject

brdisq’s equal F(10,95)=5.52 0 reject

brdisqt’s equal F(10,95)=7.04 0 reject
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Table 2.10: Model Selection Based on Bayesian Information Criterion (BIC)

Model BIC

Corn Linear CRD-specific Model 21278.5

Corn Linear Aggregate Model 21065.4

Corn Log-Linear CRD-specific Model -2524.8

Corn Log-Linear Aggregate Model -2621.5

Soybean Linear CRD-specific Model 14950.9

Soybean Linear Aggregate Model 14844.0

Soybean Log-Linear CRD-specific Model -3302.0

Soybean Log-Linear Aggregate Model -3320.6

2.4 Implications for GRP Rates

The conclusion that the drought tolerance of corn and soybeans in Indiana and Illinois

has changed over time has important implications for the U.S. crop insurance program.

For example, the Group Risk Plan (GRP) is an area yield insurance program that pays

indemnity whenever the actual county yield falls below the “trigger yield”, which is a

proportion of expected county yield. Up until 2009, GRP premium rates were determined

using a loss-cost ratio (LCR) methodology (Skees et al., 1997). Actuarial fairness of this

approach is based on the constant relative risk hypothesis (Paulson and Babcock, 2008).

Although RMA recently relaxed this assumption for GRP by using the actual yield

history to determine if relative risk in a county has increased or decreased over time,

their new procedure does not account for whether drought incidence has increased or

decreased over time. Thus, they are not able to discern if a finding of decreasing relative
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yield risk is caused by fewer droughts or an actual reduction in risk. Individual yield

insurance under the federal Actual Production History (APH) program is also based on

a LCR method that requires constant relative risk over time (Woodard et al., 2008). In

a situation of decreasing (increasing) relative risk, LCR methodology based on direct

historical experiences overestimates (underestimates) premium rates. In light of our

findings of decreasing drought-induced relative deviations for both corn and soybeans at

the county level, it is worthwhile to assess the impacts of modifying the underlying rating

assumption of constant relative risk on GRP rating. To do this, we simulate actuarial

fair rates for insuring drought-induced risk and compare them with the drought-related

part of 2008 GRP rates. We use 2008 GRP rates because the new RMA rate-making

procedures were not made available to the authors.

In the simulations two assumptions are made. First, the future probability of drought

in any year is assumed to be captured by the historical probability of drought in our

sample. This assumption can be relaxed if information about future distributions of

drought becomes available. Second, to focus only on the drought portion of GRP rates,

we assume that drought-induced yield risk can be rated separately from other sources

of yield loss. Essentially, yield risk is assumed to be in an additive form of multiple

independent risk factors with drought-induced risk being one major component. The

actuarial fair rate simulated below is the rate that corresponds only to the drought-

induced risk factor.

We simulate actuarially fair GRP rates for drought from 2010 to 2020 using the

following steps. We first select a representative county. For each year from 2010 to 2020,

we take the county’s 29 historical values of the drought index as the draws from the

empirical distribution of drought. With these 29 drought index draws for each county,
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actual yields (ActY ield) from 2010 to 2020 are predicted using fitted values from the

regression models (2.2) and (2.3) with the estimated coefficients in table 2.3.11 Expected

yields (E(Y )) are predicted using the fitted values from regression models with the

drought-index evaluated at its county mean. We fix the coverage level (C) at 0.9. Loss

percentages (%loss) are then calculated using (2.11) and (2.12).

TrigY ieldi,t = C × E(Yi,t) (2.11)

%lossi,t = max[
TrigY ieldi,t − ActY ieldi,t

TrigY ieldi,t
, 0]. (2.12)

The actuarial fair premium rate (Fairrate), is the rate such that expected indemnity

(Indem) equals expected premium (Prem). It is derived in (2.13) to (2.15) to be the

expected percentage loss.

Indemi,t = %lossi,t × Liabi,t (2.13)

Premi,t = ratei,t × Liabi,t (2.14)

E(Indemi,t) = E(Premi,t)⇔ ratei,t = E(%lossi,t)⇒ Fairratei,t = E(%lossi,t). (2.15)

We take the average of simulated loss percentages to be the simulated fair rate. Two

qualifications on the simulated fair rates need to be addressed. First, the fair rates are

prices for insuring drought-induced yield losses only. Other sources of yield risk are not

modeled in simulation. Second, only the regression-predicted drought-induced yield risk,

or the “mean effect” of the drought shock, is modeled. Actual drought-induced yield

fluctuations could be more volatile. Thus, the real actuarial fair rate should be higher.

Nevertheless, simulated fair rates indicate prices of insuring model-implied drought risk.

11Only the drought index is drawn from its empirical distribution. The residual term of the yield
regression is not included in the predicted “actual yield”. This procedure essentially excludes all yield
risks other than the drought-induced yield risk predicted by the regression.
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GRP is a multi-peril crop insurance product. To make our simulated fair rates com-

parable to GRP rates, we need to calculate GRP rates including only those losses that

occurred in drought years as indicated by this study’s drought index. The modified

GRP rating method is as follows. First, linear trends are fitted county by county to crop

yields. Second, loss percentages are calculated for historical years according to (2.11) and

(2.12), with fitted values of crop yield as expected yields and historical yield observations

as actual yields. Finally, the GRP rate is set at the average of historical loss percentages:

GRP rate
i,t =

∑t
τ=0 %lossi,τ
(t− 0)

. (2.16)

To calculate GRP drought year rates, only the final step differs:

GRP drought year rate
i,t =

∑
τ∈<%lossi,τ

ri,t
(2.17)

where < is the set of drought years and r is the number of drought years in history.

Drought years are those identified by the drought index as being positive. The GRP

drought year rate is the simple average of loss ratios in drought years only. It reflects

loss experiences closely related to drought conditions that we used to simulate the fair

rates.12

In table 2.11, we list premium rates for selected counties in our sample. Column

3 lists unloaded and unsubsidized GRP premium rates in 2008 and 2010.13 Column 4

lists the GRP rates that we calculate for drought years using (2.17). Column 5 is the

ratio of the drought-year GRP rate in column 4 divided by the GRP rate we calculate

using (2.16), which indicates the percentage of GRP rate that can be accounted for by

drought. The last three columns are simulated fair rates of insuring the model-implied

12It also reflect other risk factors in drought years that the fair rates do not incorporate.
13We take the unsubsidized GRP rate listed on the RMA website and multiply by 0.88 to remove load.

The 2010 premium rates are included to show how the new rating procedures used by RMA affected
rates.
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drought risk in 2010, 2015, and 2020. There are two rows for each county. The first rows

are fair rates predicted by the linear model. The second rows report rates predicted by

the log-linear model. GRP drought year rates in column 4 are comparable to simulated

fair rates in the last three columns in terms of insured risk.

Table 2.11: Actual and Simulated Premium Rates

State County GRP Rates GRP Drought Drought Simulated GRP Rates

2008 2010 Rates Percent 2010 2015 2020

Corn

IL Bureau 2.24% 2.92% 2.39% 92% 0.95% 0.77% 0.65%

1.41% 1.14% 1.15%

IL Peoria 3.41% 4.43% 3.66% 89% 0.91% 0.66% 0.44%

1.08% 0.61% 0.16%

IN Clinton 3.21% 2.54% 2.99% 95% 1.43% 1.25% 1.08%

1.77% 1.44% 1.10%

IN Spencer 3.61% 4.58% 2.84% 76% 1.62% 1.27% 0.98%

1.31% 0.91% 0.65%

Soybean

IL La Salle 2.23% 2.26% 1.16% 65% 0.58% 0.53% 0.49%

0.68% 0.58% 0.49%

IN Jasper 2.22% 2.26% 1.32% 55% 0.70% 0.60% 0.51%

0.90% 0.77% 0.64%

IN Randolph 2.58% 2.28% 1.88% 76% 0.82% 0.73% 0.64%

0.96% 0.86% 0.76%

IN Spencer 2.64% 2.40% 2.69% 81% 0.95% 0.81% 0.69%

0.81% 0.70% 0.59%

Note: First rows of simulated GRP drought rates are estimated from the linear model.

Second rows of simulated GRP drought rates are estimated from the log-linear

model.
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For the Indiana and Illinois selected counties, almost all of the corn GRP rates are

the result of drought and more than half of the soybean GRP rates are the result of

drought. For both crops, the 2010 fair rates are lower than the GRP drought year

rates, and they decline over time. The reason why they are lower in 2010 is that the

GRP drought rate assumes constant relative susceptibility to drought from 1980 to 2008

whereas the reality is that both corn and soybeans have actually exhibited decreasing

relative susceptibility. Simulated rates for corn decline faster than rates for soybeans

because corn shows a larger improvement in drought tolerance. These results suggest

that drought is the most important source of county yield losses and that this study’s

findings of increasing drought tolerance suggest that the drought portion of GRP rates

are much too high. This suggests that the findings of (Woodard et al., 2011) that crop

insurance premium rates in the Corn Belt are too high can be explained by increasing

drought tolerance by corn and soybean crops.

2.5 Conclusions

By constructing an objective drought index and correlating to crop yields, we ex-

plicitly account for the impact of drought on crop yield. Regression results show that

corn is becoming less susceptible to drought measured both by bushel loss and percent-

age loss. For soybeans, constant bushel loss is not rejected but the degree of drought

tolerance measured in percentage term is decreasing over time. The decreasing relative

susceptibility for both crops cast doubt on the LCR method used in rating crop insurance

programs in the United States. Simulations based on regression estimation results show

that accounting for increased drought tolerance of corn and soybeans would have major

impacts on premium rates for GRP.
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That both corn and soybeans in Indiana and Illinois are more drought tolerant is

somewhat surprising because only now are the large seed companies focusing their ef-

forts on developing drought-tolerant crops, and all of their work to date has been devoted

to corn. Their past efforts at developing biotech corn seem to have paid off in an unantic-

ipated manner by making corn hybrids better able to withstand drought conditions. But

no such effort can explain increasing drought resistance in soybeans, unless herbicide-

resistant soybeans are less susceptible to drought. Besides widespread adoption of biotech

corn and soybeans that began in the 1990s, the other large change common to both corn

and soybeans is that a greater proportion of both crops is being managed by larger and

perhaps more able managers. Better management leads to more timely field operations,

which could result in increasing drought tolerance. If true, then our finding of increased

drought tolerance may apply to other crops for which management may have improved.

The improvements in drought tolerance that we have documented in corn and soy-

beans may be dwarfed in the future if in fact the seed companies are successful in their

efforts to introduce genes that enable crops to withstand drought conditions. The crop

insurance industry and the Risk Management Agency of USDA in particular should be-

gin to alter the way they determine crop insurance rates so that as the new technologies

come online, they will have a system that can reflect the new lower risks directly in pre-

mium rates. More generally, greater drought tolerance will reduce price volatility and the

risk of major disruptions in food and fuel supplies. We conclude with a note of caution.

Because we have relatively few observations of major droughts in the 2000s, our ability

to measure the extent to which yield losses have declined under the most severe drought

conditions is limited. Because even drought tolerant crops need adequate moisture, it

would not be surprising if our estimates of the reduction in yield losses from moderate
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to severe drought conditions will turn out to be higher than the change in yield losses

that would actually occur under the most severe drought conditions.



www.manaraa.com

41

CHAPTER 3. ESTIMATING NON-LINEAR WEATHER

IMPACTS ON CORN YIELD – A BAYESIAN APPROACH

Abstract

We estimate impacts of rainfall and temperature on corn yields by fitting a linear

spline model with endogenous thresholds. Using Gibbs sampling and the Metropolis -

Hastings algorithm, we simultaneously estimate the thresholds and other model param-

eters. A hierarchical structure is applied to capture county-specific factors determining

corn yields. Results indicate that impacts of both rainfall and temperature are nonlinear

and asymmetric in most states. Yield is concave in both weather variables. Corn yield

decreases significantly when temperature increases beyond a certain threshold, and when

the amount of rainfall decreases below a certain threshold. Flooding is another source of

yield loss in some states. A moderate amount of heat is beneficial to corn yield in north-

ern states, but not in other states. Both the levels of the thresholds and the magnitudes

of the weather effects are estimated to be different across states in the Corn Belt.

3.1 Introduction

In rain-fed agricultural regions, weather conditions have substantial impacts on crop

productivity. Favorable weather conditions for dryland crop production, including a
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proper amount of heat and rainfall during the growing season, are critical factors de-

termining yield outcomes (O’Brien, 1993). Most previous studies found that corn yield

decreases in temperature and increases in the amount of rainfall (Lobell and Asner, 2003;

Deschenes and Greenstone, 2007). Understanding how weather variables affect crop yield

is essential in measuring yield risk and rating crop insurance plans (Yu and Babcock,

2010).

In quantifying the impact of weather on corn yield, one widely used approach is to

estimate a reduced form statistical relationship between corn yield and weather variables.

Two commonly used reduced forms are linear and quadratic functions. The linear spec-

ification seems convenient but it could be restrictive as well. There is evidence that the

response of corn yield to temperature and rainfall may not be constant over the whole

range of possible weather outcomes. In fact, an increase of temperature within the range

between 8◦ Celsius and 32◦ Celsius is found to be beneficial to corn yield, but increas-

ing the temperature further beyond 34◦ Celsius leads to yield losses (Schlenker et al.,

2006a). If weather factors are beneficial to corn yield in some ranges but not in others,

then the linear specification would generate a misleading result. One way to model the

non-linearity is to include a quadratic term. However, the quadratic functional form

restricts the yield response to be symmetric. There is evidence that bad growing condi-

tions typically cause more yield losses than good growing conditions cause yield gains.

In fact, based on county-level panel data of corn yield, temperature, and precipitation

from 1950 to 2004 in 2000 counties in the U.S., Schlenker and Roberts (2006) found that

an increase in temperature above 25◦ Celsius decreases corn yield growth rates at an in-

creasing rate. Nonparametric estimation is a viable approach to estimate the asymmetric

nonlinear impacts of weather variables (Schlenker and Roberts, 2006). One limitation
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of the nonparametric approach, however, is that in some ranges of the weather variable,

especially at the two tails of the distribution, the number of observations might be too

small so that the standard errors tend to be very large.

In this article, we propose to estimate a two-knot linear spline model with endoge-

nous thresholds. We simultaneously estimate the threshold parameters and other model

parameters using a sampling-based Bayesian approach. Our specification captures the

nonlinear and asymmetric feature of weather effects. The endogenous-knot linear-spline

specification is relatively simple and yet flexible. Estimation in the Bayesian framework

brings the advantages of high computational efficiency and quick convergence. In light

of the findings that a modest increase in temperature benefits corn yield in the northern

regions of the U.S. but not in other areas (Adams et al., 1990), we also examine possible

geographical differences in how the weather factors influence corn yield.

The rest of this chapter is organized as follows: in section two we specify the two-

knot linear spline model. In section three, we describe the Bayesian approach, which is

applied to estimate the model. In section four, we present the estimation results. In the

last section, we present a brief conclusion.

3.2 The Yield Model

We specify corn yield to be composed of a linear trend plus a function of weather

variables, specifically:

Yi,t = αi +
R∑
r=1

β1,r(CRDr × Time)

+β2 min(0, (Tempi,t − θl)) + β3Tempi,t + β4 max(0, (Tempi,t − θu))

+β5 min(0, (Raini,t − λl)) + β6Raini,t + β7 max(0, (Raini,t − λu)) + εi,t.(3.1)
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Subscripts i, r, and t denote county, Crop Reporting District (CRD), and time, respec-

tively. We denote the total number of counties as N , the total number of years as T , and

the total number of CRDs as R. Y denotes corn yield. Time is a time trend variable,

which takes values 0 to 28 for years 1980 to 2008. CRDr, r = 1, 2, ..., R, denotes the

regional dummy variable. CRDr = 1, if the yield observation is from crop reporting

district r, and CRDr = 0 otherwise. Temp and Rain denote mean monthly temper-

ature and mean monthly rainfall in the growing season, respectively.1 Without loss of

generality, we recenter the temperature and rainfall variables at zero by subtracting the

historical mean from each temperature or rainfall observation. The recentering process

does not affect our estimation of other parameters except αi. After recentering, αi mea-

sures the average corn yield in the base year (1980) in county i when temperature and

rainfall are at their historical mean levels. We assume that the error term εi,t is i.i.d.

normal with mean zero and variance σ2
ε .

In our specification, corn yield is expressed in an additive form of a linear trend

and two-knot linear spline functions of rainfall and temperature. For the linear trend,

we permit the intercept term αi to vary across counties. Thus, αi captures time-

invariant county-specific factors that influence corn yield. Since fixed-effect estimation

in a Bayesian setting is inefficient, we specify a hierarchical structure for αi. Specifically,

we assume that αi, for i = 1, 2, ..., N , is independently and identically distributed from a

normal distribution N(α, σ2
α). α and σ2

α are hierarchical parameters, which are estimated

simultaneously with other model parameters. We allow the trend slope to vary across

CRDs by including an interaction term between the regional dummy variable and the

time trend variable. β1,r is fixed for any given CRD but differs across CRDs. Coefficients

β2 to β7 are restricted to be constant across all counties. Equation (3.1) is essentially a

1We specify the growing season as from June to August.



www.manaraa.com

45

mixed model, with a random effect αi and a fixed effect β. In a Bayesian framework, we

simultaneously estimate model parameters α, β, θ, and λ.

The two-knot linear spline functions of rainfall and temperature capture the poten-

tially asymmetric and nonlinear feature of weather effects. We allow weather effects to

be different when temperature (or the amount of rainfall) is lower than usual, within the

middle range, or higher than usual. This is achieved by introducing endogenous thresh-

old parameters. λl (or θl) and λu (or θu) denote the lower and upper thresholds that

divide the domain of the weather variable into three ranges. The min and max operators

serve as switches that turn on the specific β that we want to estimate when the weather

variable falls into the specific range. The yield model allows a changing yield response

as the weather regime changes. To better illustrate this feature, we rewrite model (3.1)

as:

Yi,t = α̃i +
R∑
r=1

β1,r(CRDr × Time) + βtemp,sTempi,t + βrain,sRaini,t + εi,t

βtemp,s ≡


βtemp,cl = β2 + β3 if Temp ≤ λl

βtemp,nt = β3 if λl < Temp < λu

βtemp,ht = β3 + β4 if Temp ≥ λu

βrain,s ≡


βrain,dr = β5 + β6 if Rain ≤ λl

βrain,nr = β6 if λl < Rain < λu

βrain,fl = β6 + β7 if Rain ≥ λu

(3.2)

Subscript s denotes the state of nature, which is defined by the weather variable falling

into one of the threshold-divided ranges. βtemp,s (or βrain,s) measures the marginal effect

of temperature (or rainfall) in each state of nature. The marginal effect can potentially

change depending on the weather condition. For example, one inch of rainfall in drought

years could result in a different amount of change in corn yield than in normal years.
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3.3 The Bayesian Approach

We now turn to the estimation methodology. Note that (3.1) is non-linear in threshold

parameters λ and θ. Non-linear least square estimation (NLS) and maximum likelihood

estimation (MLE) could potentially be used to estimate (3.1). In this chapter, we take the

sampling-based Bayesian approach. The advantages of Bayesian estimation include easy

implementation, fast convergence, and computational efficiency. We apply the Markov

chain Monte Carlo (MCMC) in estimating (3.1). The implementation of the MCMC is

essentially sequentially taking draws from (sequentially updated) conditional posterior

distributions of model parameters. The ease of applying the MCMC to our model results

from the observation that conditional on threshold parameters, (3.1) becomes a well

known linear regression model with a hierarchical structure. Under conjugate priors, the

conditional posterior distributions of parameters except λ and θ are readily derived. And

it is easy to apply the Gibbs sampling to simulate draws from the conditional posterior

distributions (Lindley and Smith, 1972; Gelfand et al., 1990; Chib and Carlin, 1999). The

conditional posterior distributions of λ and θ require some derivations and are not of any

recognizable distributional forms. Thus, we apply the Metropolis - Hastings algorithm

(Chib and Greenberg, 1995; Gelman et al., 1995) in the step of drawing λ and θ from

their conditional posterior distributions. The estimation process would become clear once

we have the prior distributions, the likelihood function, and the posterior distributions,

which will be specified and derived in the following sections.

3.3.1 Priors

Following Chib and Carlin (1999), we assume normal priors for α and β, and in-

verse gamma priors for the variance parameters. These are conjugate priors in the
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sense that the posterior distributions belong to the same family as the prior proba-

bility distributions. We assume conjugate priors due to the computational ease as-

sociated with this specification. Results are not sensitive to the specific form of the

prior distribution. For notation simplicity, we stack all the fixed-effect parameters

into one vector and define as: β ≡ [β1,1, β1,2, ...β1,R, β2, β3, ..., β7]′. We assume the

prior distribution of β to be N(µβ, Vβ), where N denotes the normal distribution. As

specified above, αi is of normal distribution N(α, σ2
α). We assume the prior distribu-

tions of the hierarchical mean and variance parameters α and σ2
α to be N(µα, Vα) and

IG(a1, a2), respectively. IG denotes the inverse gamma distribution. We assume the

prior distribution of the variance of the error term σ2
ε to be IG(e1, e2). We assume

that µβ and µα equal to the corresponding OLS estimates of a linear yield model,

Yi,t = αi +
∑R

r=1 β1,r(CRDr × Time) + βtempTempi,t + βrainRaini,t + εi,t, with µ =

βOLStemp × [1, 1, 1, 0, 0, 0]′ + βOLSrain × [0, 0, 0, 1, 1, 1]′. We assume Vα = 1600 and Vβ = 100

so that the normal priors are reasonably diffused. For the inverse gamma distributions,

we set e1 = a1 = 3 and e2 = a2 = 1
2×100

so that the standard deviation of the inverse

gamma distribution is 10.2 Finally, we assume the prior distribution of the lower and

upper thresholds to be the joint uniform distribution over the domain of the weather

variable, with the restriction that the upper threshold is larger than the lower thresh-

old. Specifically, p(θl, θu) = 2
(Tempmax−Tempmin)2

I(Tempmin < θl < θu < Tempmax) and

p(λl, λu) = 2
(Rainmax−Rainmin)2

I(Rainmin < λl < λu < Rainmax), where I(.) denotes the

index function. We set Tempmax (or Rainmax) at the recentered 95% percentile of all

temperature (or rainfall) observations and Tempmin (or Rainmin) at the recentered 5%

percentile of all temperature (or rainfall) observations.

2Results are insensitive to the specific values of the prior distribution parameters.
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3.3.2 The Likelihood Function

The other piece of information we need in order to derive the posterior distributions

is the likelihood function. For notation simplicity, we stack the explanatory variables as:

X(θ, λ)i,t ≡[(CRD1 × T ), (CRD2 × T ), ..., (CRDR × T ),

(min(0, (Tempi,t − θl))), T empi,t, (max(0, (Tempi,t − θu))),

(min(0, (Raini,t − λl))), Raini,t, (max(0, (Raini,t − λu)))]. (3.3)

Then the likelihood function is:

L(.) =
N×T∏
i=1

p{Yi,t|αi, β, σ2
ε , Xi,t(θ, λ)}

= (2πσ2
ε )
−N×T

2 exp[− 1

2σ2
ε

N∑
i=1

T∑
i=1

(Yi,t − αi −Xi,t(θ, λ)β)2]. (3.4)

Notation Xi,t(θ, λ) emphasizes the fact that Xi,t depends on thresholds θ and λ. To

be succinct, we drop θ and λ and simply note Xi,t when referring to Xi,t(θ, λ) in the

following text.

3.3.3 Conditional Posteriors

Based on the priors and the likelihood function specified above, we derive the condi-

tional posterior distributions. As mentioned above, standard results for the linear regres-

sion model apply to our model once we condition on the threshold parameters. Following

Chib and Carlin (1999), the posterior distributions are derived by applying conclusions by

Lindley and Smith (1972). Specifically, p(αi|β, α, σ2
ε , σ

2
α, θ, λ, Y ) ∼ N(D1d1, D1), where

D1 = ( T
σ2
ε

+ 1
σ2
α
)−1, d1 =

ι′T (Yi−Xiβ)

σ2
ε

+ α
σ2
α
.3 Similarly, the posterior distribution of β

is also normal. p(β|αi, α, σ2
ε , σ

2
α, θ, λ, Y ) ∼ N(D2d2, D2), where D2 = (X

′X
σ2
ε

+ V −1
β )−1,

3ι is a column vector of ones. Its dimension is specified by its subscript.
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d2 = X′(y−ᾱ)
σ2
ε

+ V −1
β µβ, ᾱ ≡ [(ιTα1)′, (ιTα2)′, ..., (ιTαN)′]. Again, the posterior distribu-

tion of α is normal. p(α|αi, β, σ2
ε , σ

2
α, θ, λ, Y ) ∼ N(D3d3, D3), where D3 = ( N

σ2
α

+ V −1
α )−1,

d3 =
ι′N [α1,α2,...,αN ]′

σ2
α

+ V −1
α µα.

Conditional posterior distributions of the variance parameters are inverse gamma.

p(σ2
α|αi, β, σ2

ε , θ, λ, Y ) ∼ IG(N
2

+a1, (
1
a2

+0.5
∑N

i=1(αi−α)2)−1). p(σ2
ε |αi, β, σ2

α, θ, λ, Y ) ∼

IG(N×T
2

+e1, (
1
e2

+0.5(Y −[ιtα1, ιtα2, ..., ιtαN ]′−Xβ)′(Y −[ιtα1, ιtα2, ..., ιtαN ]′−Xβ))−1).

The posteriors for θ and λ are not derived in the same fashion, but are straightforward

under uniform priors. Since the conditional posterior is proportional to the likelihood

function multiplied by the prior for θ and λ, the kernel of the conditional posterior of θ

and λ is simply the likelihood function as specified in (3.4).

3.3.4 Implementing the Gibbs Sampling and the Metropolis - Hastings Al-

gorithm

We take a sampling-based approach to estimate the hierarchical model (3.1). We

implement the Gibbs sampler to draw β, {αi}, α, σ2
ε , and σ2

α. Since the conditional

posterior distribution of θ and λ are not of any recognizable distributional form, we

employ the random-walk Metropolis-Hastings algorithm to draw θ and λ. The procedure

of implementing the Gibbs Sampler and the Metropolis - Hastings algorithm is as follows.

(1) Start with initial values of model parameters: β, {αi}, α, σ2
ε , σ

2
α, θ, and λ. Calculate

X(θ, λ) with θ and λ evaluated at initial values. (2) Draw β̃ from its conditional posterior

distribution, conditional on the initial values of other model parameters. (3) Draw {αi}

from their conditional posterior distributions, conditional on the most recent draw of

β̃ and other model parameters at their initial values. (4)-(6) Draw α, σ2
ε , and σ2

α one

by one from their conditional posterior distributions, conditional on other parameters,
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which are updated to their most recent draws. (7) Sample θ∗ = θ[−1] + εθ, where θ[−1]

denotes the last draw of θ in the chain and εθ is a draw from normal distribution N(0, σθ).

Draw u ∼ U(0, 1). Denote p(.) as the conditional posterior distribution of θ, conditional

on the most recent draws of other model parameters. Calculate the index function

I(Tempmin < θ∗l < θ∗u < Tempmax). If u ≤ p(θ∗)
p(θ−1)

and the index function is equal to one,

then keep θ∗ as a draw from the conditional posterior, that is, θ̃ = θ∗. Otherwise, use

the last draw from the chain θ̃ = θ[−1]. Update X(θ̃, λ). (8) Draw λ̃ in a similar fashion

as with θ̃ in step (7), and update X(θ, λ̃) accordingly. (9) Repeat steps (2)-(8) 20,000

iterations, updating the posterior conditionals at each iteration using the most recently

simulated values in the chain. (10) Discard an early set of parameter simulations (the

first 5,000 iterations) as the burn-in period. Use the subsequent draws to make Bayesian

posterior inferences.

Following Chib and Carlin (1999), we improve the above process by drawing the

random effect parameters {αi} and fixed effect parameter β in a single block. We replace

steps (2)-(3) by drawing ({αi}, β) from p({αi}, β|α, σ2
ε , σ

2
α, Y ). Specifically, we draw the

group via the method of composition. We first draw β̃ from p(β|α, σ2
ε , σ

2
α, θ, λ, Y ) and

then draw each αi independently from its complete posterior distribution evaluated at

β̃: p(αi|β̃, α, σ2
ε , σ

2
α, θ, λ, Y ). Denote Σ = σ2

ε IT + σ2
αιT ι

′
T . Then p(β|α, σ2

ε , σ
2
α, θ, λ, Y ) ∼

N(D4d4, D4), where D4 = (X ′(IN ⊗Σ−1)X + V −1
β ))−1, d4 = X ′(IN ⊗Σ−1)(Y − ιNTα) +

V −1
β µβ. The strategy of grouping together correlated parameters will generally facilitate

the mixing of the chain and thereby reduce numerical standard errors associated with

Gibbs sampling estimates.
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3.4 Data

We collected weather and yield data in major non-irrigated corn-production states

from 1980 to 2008. Those states are Illinois, Indiana, Iowa, Michigan, Minnesota, Mis-

souri, Ohio, and Wisconsin. County-level production and planted acreage data were

collected from the National Agricultural Statistics Service (NASS) to calculate yield per

planted acre. Observations with zero production or missing acreage data were deleted.

To focus our attention on major production areas, only counties with yield data in all

years from 1980 to 2008 were kept. Weather data were collected from the National

Oceanic and Atmospheric Administration (NOAA). We obtained data of monthly mean

temperature (MNTM) and total monthly precipitation (TPCP) from all weather sta-

tions located in the eight states. For most of the weather stations, NOAA identified the

county where each weather station was located. For stations not identified to any county,

we found the nearest station with a county name (by calculating the distance between

weather stations using latitude and longitude information) and assigned the unidentified

station to the county of the nearest station. Most of the counties are matched with

at least one weather station. For counties with multiple weather stations, we took the

simple average of weather records from all weather stations located in the county. For

each year, county level corn yields were matched with county-level weather data. We

substituted missing values of rainfall or temperature with the average value of the CRD

that the county belongs to.4

4Less than 10% of the observations have missing values.
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3.5 Estimation Results

Using a panel of county-level corn yield with matched rainfall and temperature data,

we estimate model (3.1) state by state. For each state, we apply the MCMC as described

above. We run 20,000 iterations with the first 5000 iterations as the burn-in period. Pa-

rameters simulated by the Gibbs sampler converges very fast. The posterior distributions

of threshold parameters are insensitive to changes in initial values, which indicates that

simulations using the M-H algorithm also converge. In applying the M-H algorithm,

we tune the variance parameter of the random walk chain so that the acceptance rate

is maintained at around 0.3.5 Based on the 15,000 kept draws for each parameter, we

calculate the mean and standard deviation of the posterior distributions. Table 3.1 and

table 3.2 present these results.

In table 3.1, β1,r, for r = 1, 2, ..., R, measures the CRD-specific slope of the linear

trend. There are nine CRDs in each state except Michigan and Minnesota, where we

only have data for seven CRDs for each state. Trend estimates range from low of nearly

zero in CRD 6 in Ohio to as high as about 2.5 bushels per acre per year in Illinois,

Iowa, and Minnesota. Trend estimates are positive and statistically significant in most

CRDs as expected. α0 measures the state average of the county-specific intercept term

αi. Since we re-centered weather variables at zero, α0 indicates the state average yield

in 1980 if temperature and the amount of rainfall were at the historical mean levels. α0

is estimated to be around 70-120 bushels per acre. σ2
α is the variance parameter of the

distribution of αi. Variance of the county-specific intercept ranges from 77 in Iowa to

477 in Minnesota, averaging around 200. The variance parameter of the residual term is

around 200.

5A 0.3 acceptance rate is a common rule of thumb to achieve optimal mixing.
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Table 3.1: Posterior Mean and Standard Deviation of Trend and Variance Parameters

IL IN IA MI MN MO OH WI

β1,1 2.43 1.93 2.42 2.37 1.74 1.44 0.74

( 0.09 ) ( 0.11 ) ( 0.10 ) ( 0.22 ) ( 0.12 ) ( 0.10 ) ( 0.12 )

β1,2 1.87 1.85 1.97 1.05 1.69 1.39 0.98

( 0.12 ) ( 0.11 ) ( 0.10 ) ( 0.21 ) ( 0.14 ) ( 0.11 ) ( 0.14 )

β1,3 2.47 1.59 2.08 1.71 1.61 0.88 0.63

( 0.11 ) ( 0.11 ) ( 0.10 ) ( 0.21 ) ( 0.15 ) ( 0.12 ) ( 0.16 )

β1,4 2.31 1.65 2.29 2.80 1.83 1.62 1.25

( 0.10 ) ( 0.11 ) ( 0.09 ) ( 0.12 ) ( 0.16 ) ( 0.11 ) ( 0.11 )

β1,5 2.15 1.61 2.40 1.28 2.09 1.53 1.57 1.03

( 0.12 ) ( 0.08 ) ( 0.09 ) ( 0.15 ) ( 0.11 ) ( 0.12 ) ( 0.10 ) ( 0.13 )

β1,6 1.84 1.58 2.14 1.68 1.25 1.63 0.16 0.74

( 0.11 ) ( 0.14 ) ( 0.10 ) ( 0.12 ) ( 0.14 ) ( 0.16 ) ( 0.19 ) ( 0.11 )

β1,7 1.82 1.78 1.99 1.51 2.75 2.00 1.45 1.39

( 0.09 ) ( 0.09 ) ( 0.11 ) ( 0.12 ) ( 0.14 ) ( 0.20 ) ( 0.11 ) ( 0.12 )

β1,8 1.77 1.39 1.89 1.45 2.14 2.37 0.84 1.63

( 0.12 ) ( 0.12 ) ( 0.10 ) ( 0.09 ) ( 0.13 ) ( 0.40 ) ( 0.32 ) ( 0.13 )

β1,9 1.63 1.24 1.92 1.79 2.24 2.19 0.73 1.09

( 0.12 ) ( 0.21 ) ( 0.10 ) ( 0.10 ) ( 0.13 ) ( 0.18 ) ( 0.12 ) ( 0.14 )

α0 104.76 119.33 109.90 79.12 88.71 77.11 105.99 95.50

( 3.12 ) ( 6.28 ) ( 3.10 ) ( 4.91 ) ( 4.04 ) ( 6.20 ) ( 5.23 ) ( 8.81 )

σ2
α 180.69 111.02 77.31 243.85 476.99 273.82 202.47 249.87

( 30.64 ) ( 21.36 ) ( 13.43 ) ( 59.21 ) ( 95.85 ) ( 54.95 ) ( 39.01 ) ( 50.75 )

σ2
ε 231.81 206.65 253.67 179.96 295.39 355.59 222.87 220.81

( 6.92 ) ( 6.79 ) ( 6.90 ) ( 7.87 ) ( 10.81 ) ( 12.44 ) ( 7.52 ) ( 7.88 )

Note: Standard errors are in parenthesis.
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Table 3.2: Posterior Mean and Standard Deviation of Parameters of Weather Impacts

IL IN IA MI MN MO OH WI

β2 4.19 8.16 3.32 4.49 4.05 0.07 5.17 8.11

( 1.54 ) ( 2.85 ) ( 0.94 ) ( 2.20 ) ( 1.27 ) ( 3.51 ) ( 2.92 ) ( 2.89 )

β3 -5.88 -11.59 -5.39 -1.52 -1.58 -5.80 -7.82 -6.53

( 1.40 ) ( 2.89 ) ( 1.04 ) ( 2.18 ) ( 1.28 ) ( 2.81 ) ( 3.00 ) ( 2.97 )

β4 -1.04 7.62 -5.92 -0.05 -9.59 -1.10 -0.03 -1.70

( 1.64 ) ( 2.97 ) ( 1.73 ) ( 2.48 ) ( 1.63 ) ( 3.44 ) ( 3.37 ) ( 3.39 )

β5 11.60 11.33 12.60 9.62 10.97 5.35 11.13 10.00

( 2.99 ) ( 2.48 ) ( 1.69 ) ( 6.98 ) ( 1.64 ) ( 4.19 ) ( 3.28 ) ( 2.32 )

β6 7.04 2.28 1.89 3.13 -2.57 1.72 5.11 3.67

( 2.88 ) ( 2.40 ) ( 1.26 ) ( 5.57 ) ( 1.39 ) ( 3.89 ) ( 3.41 ) ( 1.78 )

β7 -8.42 -6.37 -16.67 -2.93 -10.85 -7.31 -5.50 -7.85

( 2.34 ) ( 2.25 ) ( 1.12 ) ( 5.79 ) ( 2.49 ) ( 3.34 ) ( 3.06 ) ( 1.94 )

θl -2.43 1.65 0.89 -2.30 -0.15 -1.11 1.08 2.18

( 0.63 ) ( 0.29 ) ( 0.77 ) ( 0.72 ) ( 0.53 ) ( 2.18 ) ( 0.55 ) ( 0.53 )

θu 1.46 2.33 3.59 0.69 2.49 0.80 2.21 3.28

( 1.56 ) ( 0.38 ) ( 0.35 ) ( 2.03 ) ( 0.36 ) ( 2.29 ) ( 0.72 ) ( 0.51 )

λl -1.33 -0.48 -0.95 -0.20 -0.19 -0.18 -0.70 -0.73

( 0.45 ) ( 0.22 ) ( 0.28 ) ( 0.35 ) ( 0.28 ) ( 0.73 ) ( 0.27 ) ( 0.23 )

λu 0.42 1.28 1.67 0.72 2.06 1.52 0.84 0.70

( 0.55 ) ( 0.65 ) ( 0.21 ) ( 0.58 ) ( 0.23 ) ( 0.87 ) ( 0.83 ) ( 0.29 )

Note: Standard errors are in parenthesis.

Table 3.2 presents the posterior mean and standard deviation of parameters that
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capture the impacts of weather. β3 is the estimate of the marginal effect of temperature

on corn yield when temperature is between the lower and the upper thresholds. β3 is

estimated to be negative in all states and is statistically significant in all states except

Minnesota and Michigan. As temperature increases one degrees Fahrenheit within the

range, corn yield is estimated to decrease about 8 bushels per acre in Ohio and around 6

bushels per acre in Illinois, Iowa, Missouri and Wisconsin. β2 measures the difference be-

tween the marginal effect of temperature when temperature is below the lower threshold

and the marginal effect of temperature when temperature is between the two thresholds.

β2 is estimated to be positive and statistically significantly in all states except Missouri.

This indicates that, on the margin, heat is less harmful in cooler weather conditions.

The difference in marginal effect is about 3 to 8 bushels per acre. β4 measures the differ-

ence between the marginal effect of temperature when temperature is above the upper

threshold and the marginal effect of temperature when temperature is between the two

thresholds. β4 is estimated to be insignificant in Illinois, Michigan, Missouri, Ohio, and

Wisconsin, indicating that the marginal damage of excess heat remains about the same

once temperature reaches beyond the lower threshold. In other words, the upper tem-

perature threshold is redundant for these states.6 However, β4 is useful in identifying the

extra damage due to excessive heat when temperature reaches beyond the upper thresh-

old in Iowa and Minnesota. β4 is negative and statistically significant in these two states.

As temperature increases every degree Fahrenheit beyond the upper threshold, corn yield

losses an additional 9.6 bushels per acre in Minnesota and an additional 6 bushels per

acre in Iowa as compared with the marginal effect of temperature when temperature is

between the two thresholds. Note that the estimated values of β2, β3, and β4 indicate

6We also estimated the model with one temperature threshold for these state and obtained similar
results.
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that in Indiana the marginal loss from heat is largest when temperature is within the

middle range, which is against common sense. We suspect that the estimated values of

the lower and upper temperature thresholds in Indiana are too close so that estimation

of β3 might be dominated by noise. As we will present later in the chapter, in cases when

the two thresholds are close, the one-knot specification offers a better estimation.

The marginal effect of rainfall is captured by parameters β5, β6, and β7. β6 measures

the marginal effect of rainfall when rainfall is between the lower and upper thresholds.

β6 is positive and statistically significant in Illinois and Wisconsin but is negative in Min-

nesota. Within this middle range of rainfall, one inch increase in rainfall increases corn

yield by 7 bushels per acre in Illinois and 4 bushels per acre in Wisconsin but decreases

corn yield by 2.5 bushels per acre in Minnesota. β6 is insignificant in other states. β5

is positive and statistically significant in all states except Michigan and Missouri. This

indicates that the marginal effect of rainfall is very different in dry weather conditions as

compared with the ‘normal weather’ (the amount of rainfall between the two thresholds).

The difference is that one inch increase in rainfall when the amount of rainfall is below

the lower threshold brings in an additional marginal benefit of 10 to 12 bushels per acre

to corn yield in Illinois, Indiana, Iowa, Minnesota, Ohio, and Wisconsin. β7 measures the

difference in marginal effects of rainfall between flooding and the middle range rainfall.

It is negative and significant in all states except Michigan. β7 ranges from 5 bushels per

acre to 17 bushels per acre.

The bottom part of table 3.2 presents estimation results for threshold parameters.

Since we recentered rainfall and temperature variables to zero, θ and λ indicate the

distance between the threshold and the historical mean of the weather variable. Results

show that the lower threshold of temperature is about 2.5 degrees Fahrenheit below the
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mean temperature in Illinois and Michigan, and about 1 to 2 degrees Fahrenheit above the

mean temperature in Ohio and Wisconsin. The lower threshold is around the historical

mean temperature in Iowa and Minnesota. The upper threshold of temperature also

varies across states, ranging from the mean temperature to 3.6 degrees Fahrenheit above

the mean temperature. As pointed out above, β4 is insignificant in Illinois, Michigan,

Missouri, Ohio, and Wisconsin. The upper threshold of temperature in these states are

ineffective. In other words, there is a statistically significant change in temperature effect

around the lower threshold but not around the upper threshold. In most states, the lower

threshold of rainfall is less than an inch below the historical mean rainfall. The upper

threshold of rainfall ranges from 0.5 inches to 2 inches above the mean. To compare

across states the absolute values of the thresholds instead of the relative distances, we

add back the historical mean of rainfall and temperature to the posterior mean of θ and

λ and present the results in table 3.3. Temperature thresholds vary significantly across

states, with lower values in northern states such as Michigan, Minnesota and Wisconsin.

Rainfall thresholds exhibits less variation. The lower threshold of rainfall is around 3.5

inches. And the upper threshold of rainfall is around 6 inches in Iowa, Minnesota, and

Missouri, and is about 4.5 to 5.5 inches in other states.

Table 3.3: Comparing Thresholds Across States

IL IN IA MI MN MO OH WI

lower threshold of temperature 71.51 74.55 72.90 66.41 69.24 74.79 72.43 70.50

upper threshold of temperature 75.40 75.22 75.60 69.40 71.89 76.70 73.57 71.60

lower threshold of rainfall 2.55 3.62 3.49 3.18 3.87 4.04 3.22 3.40

upper threshold of rainfall 4.30 5.37 6.11 4.10 6.12 5.74 4.76 4.83
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3.5.1 The Marginal Effect

To better evaluate the marginal effect of weather variables in each weather regime,

we simulate βtemp,s and βrain,s. For each of the 15,000 kept draws of β2 to β7, we simu-

late βtemp,s and βrain,s according to equation (3.2). We present the mean and standard

deviation of the simulated βtemp,s and βrain,s in table 3.4. The marginal effect of temper-

ature when temperature is below the lower threshold is measured by βtemp,cl. βtemp,cl is

positive and significant in northern states such as Michigan, Minnesota, and Wisconsin,

but negative and significant in Illinois, Iowa, Missouri, and Ohio. One degree Fahrenheit

increase in temperature in this weather regime increases corn yield by 1.6 bushels per

acre in Wisconsin, by 2.5 bushels per acre in Minnesota, and by 3 bushels per acre in

Michigan. On the other hand, the marginal effect is to decrease corn yield by 1.7 bushels

per acre in Illinois, by 2 bushels per acre in Iowa, by 2.7 bushels per acre in Ohio, and

by 5.7 bushels per acre in Missouri. In Illinois, Michigan, Ohio, and Wisconsin, the

marginal effect of temperature stays roughly the same once temperature is above the

lower threshold. Once temperature is above the lower threshold, the marginal damage of

increasing temperature by one degree Fahrenheit is about 6-8 bushes per acre in Illinois,

Ohio, and Wisconsin and around 1.5 bushels per acre in Michigan. On the other hand,

in Iowa and Minnesota, the adverse marginal effect of heat is much higher when temper-

ature increases beyond the upper threshold compared with when temperature is between

the two thresholds. The marginal effect of temperature is about 11 bushels per acre in

Iowa and Minnesota in the hot weather condition. In Missouri, the marginal effect of

temperature remains at about -6 bushels per acre over the whole range of temperature.
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Table 3.4: Marginal Effects of Temperature and Rainfall

IL IN IA MI MN MO OH WI

βtemp,cl -1.69 -3.42 -2.07 2.97 2.47 -5.73 -2.66 1.58

( 0.87 ) ( 0.26 ) ( 0.31 ) ( 1.06 ) ( 0.48 ) ( 1.25 ) ( 0.41 ) ( 0.29 )

βtemp,nt -5.88 -11.59 -5.39 -1.52 -1.58 -5.80 -7.82 -6.53

( 1.40 ) ( 2.89 ) ( 1.04 ) ( 2.18 ) ( 1.28 ) ( 2.81 ) ( 3.00 ) ( 2.97 )

βtemp,ht -6.92 -3.97 -11.32 -1.57 -11.17 -6.90 -7.86 -8.23

( 0.73 ) ( 0.90 ) ( 1.22 ) ( 1.01 ) ( 1.33 ) ( 1.16 ) ( 1.18 ) ( 1.16 )

βrain,dr 18.65 13.61 14.49 12.75 8.40 7.08 16.24 13.67

( 3.92 ) ( 1.34 ) ( 2.22 ) ( 2.21 ) ( 1.73 ) ( 1.32 ) ( 2.00 ) ( 1.95 )

βrain,nr 7.04 2.28 1.89 3.13 -2.57 1.72 5.11 3.67

( 2.88 ) ( 2.40 ) ( 1.26 ) ( 5.57 ) ( 1.39 ) ( 3.89 ) ( 3.41 ) ( 1.78 )

βrain,fl -1.38 -4.09 -14.77 0.20 -13.42 -5.59 -0.39 -4.18

( 1.00 ) ( 1.88 ) ( 0.83 ) ( 1.75 ) ( 1.85 ) ( 1.63 ) ( 1.96 ) ( 1.00 )

Note: Standard errors are in parenthesis.

The marginal effect of rainfall when the amount of rainfall is below the lower threshold

is universally positive and significant. The marginal benefit of one inch of rainfall in

this rainfall regime ranges from 7 bushels per acre in Missouri to 18.7 bushels per acre

in Illinois. The marginal effect of rainfall when the amount of rainfall is above the

upper threshold is negative and significant in Indiana, Iowa, Minnesota, Missouri, and

Wisconsin. The marginal damage of rainfall in this rainfall regime is around 5 bushels

per acre in Indiana, Missouri, and Wisconsin and reaches 13-14 bushel per acre in Iowa



www.manaraa.com

60

and Minnesota. In Illinois, Michigan, and Ohio, the marginal effect of rainfall when

rainfall reaches above the upper threshold is insignificant.

3.5.2 Features of Weather Effects

To intuitively see the impact of weather on corn yield, we plot the posterior mean

of corn yield against temperature and rainfall, state by state, in figure 3.1 and figure

3.2. For the plot of yield against temperature, we generate 500 values of temperature

evenly distributed over the observed range of temperature. We then evaluate model (3.1)

with the time variable being 28 (year 2008), the rainfall variable being the state average,

and the temperature variable being each one of the 500 generated values. For each

temperature value, we simulate 15,000 corn yield draws using the simulated coefficients

from the 15,000 MCMC iterations. To represent corn yield at the state average level,

we use α0 as the intercept term of the linear trend and use the average of CRD-specific

trend slopes to calculate the trend yield. For each of the 500 temperature values, we

calculate the posterior mean of corn yield from the 15,000 simulations. We then plot the

500 posterior means of corn yield against the 500 values of temperature. We also plot

the posterior mean of corn yield against rainfall in a similar way except that we instead

use the state average temperature and 500 values of rainfall.
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Figure 3.1: Plots of weather impacts on corn yield
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Figure 3.2: Plots of weather impacts on corn yield - continued
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The plots reveal several features of the impacts of weather on corn yield. First, the

impacts of both weather variables are nonlinear in most states. The exceptions are that

corn yield is almost linear in temperature in Indiana and Missouri. If a linear specifi-

cation were applied to estimate the weather impacts, the estimated slope would be the

weighted average of slopes of the three linear splines in our specification, with frequen-

cies of the occurrences in each weather regime as weights. Given that the distribution

of temperature is almost symmetric and that the distribution of rainfall is positively

skewed, the average impact is likely to be negative for temperature and positive for rain-

fall, which is consistent with findings in literature. As the plots indicate, the underlining

weather impacts actually vary across weather regimes. Thus, our specification is a more

comprehensive and precise way to estimate weather impacts. Secondly, the impact is

asymmetric in most cases. Particularly, an excessive amount of heat causes more dam-

age to corn yield than does a moderate amount of heat benefits corn yield in the northern

states. Similarly, corn yield is more responsive to a lack of rainfall than to excessive rain-

fall in Ohio, Illinois, Indiana, and Michigan. And there are several plots that indicate

yield could be monotone in the weather variable. Thus, a quadratic specification would

be too restrictive. With endogenous thresholds, the linear spline specification is reason-

ably flexible and simple. Thirdly, corn yield is concave in both rainfall and temperature.

Consider lack of heat as a favorable input to corn growth, then as this input increases (as

temperature decreases), the marginal benefit from the favorable weather input decreases.

Similarly, the marginal benefit of rainfall decreases as rainfall increases. The notion of

decreasing marginal benefit, which is valid for other agricultural inputs, is true for the

weather input, arguably the most important production input for crops. Finally, there

is not a universal pattern of how weather variables affect corn yield. Rather, there exist
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several patterns, depending on the geographical location of the state. There are three

patterns of the temperature effect. In Illinois, Iowa, and Ohio, the temperature effect

is always negative, but with a flatter slope below the threshold at around 73 degrees

Fahrenheit and a steeper slope above the threshold. In Indiana and Missouri, the tem-

perature effect is negative and linear. In northern states, including Michigan, Minnesota,

and Wisconsin, corn yield increases as temperature increases until a threshold, and then

decreases. Patterns of rainfall fall into two general categories. In both categories, corn

yield increases sharply as the amount of rainfall increases until it reaches the lower thresh-

old. The difference between the two categories is how yield responds to rainfall above

the threshold. In Illinois, Indiana, Michigan, and Ohio, corn yield becomes insensitive

to rainfall above the threshold. In Minnesota, Missouri, Iowa, and Wisconsin, corn yield

decreases sharply when the amount of rainfall reaches beyond the upper threshold.

The plots also reflect three main sources of yield losses. One is excessive heat, that

is, when temperature reaches beyond a threshold. This threshold is about 73, 75.5,

66.5, 72, 72.5, 70.5 degrees Fahrenheit in Illinois, Iowa, Michigan, Minnesota, Ohio, and

Wisconsin respectively. The second cause is a lack of rainfall, that is, when the amount

of rainfall is less than the lower threshold, which is between 2.5 to 4 inches. Flooding

could also induce an equally large yield loss in Iowa, Minnesota, Missouri and Wisconsin.

3.5.3 The One-knot Specification

The plot of corn yield against temperature in Indiana raises the issue that the two

thresholds might be too close to facilitate valid estimation. We instead estimate a yield

model with a one-knot linear spline function of temperature and a two-knot linear spline

function of rainfall using data in Indiana. Estimation results are presented in table 3.5.
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Table 3.5: Estimation Results for the One-Knot Specification, Indiana

β1,1 β1,2 β1,3 β1,4 β1,5 β1,6 β1,7 β1,8 β1,9

1.93 1.85 1.58 1.66 1.60 1.59 1.78 1.39 1.25

( 0.11 ) ( 0.11 ) ( 0.11 ) ( 0.11 ) ( 0.08 ) ( 0.13 ) ( 0.09 ) ( 0.12 ) ( 0.21 )

α0 σ2
α σ2

ε β2 β3 β5 β6 β7

106.86 111.76 207.27 1.99 -5.31 11.40 2.28 -6.47

( 1.89 ) ( 21.81 ) ( 6.76 ) ( 0.53 ) ( 0.44 ) ( 2.32 ) ( 2.19 ) ( 2.06 )

θ λl λu βtemp,cl βtemp,nt βrain,dr βrain,nr βrain,fl

0.75 -0.50 1.31 -3.32 -5.31 13.68 2.28 -4.19

( 0.60 ) ( 0.22 ) ( 0.57 ) ( 0.32 ) ( 0.44 ) ( 1.25 ) ( 2.19 ) ( 1.76 )

Trend parameters and variance parameters are similar to the two-knot specification

results. The rainfall thresholds and marginal effects of rainfall are also similar to the

two-knot specification results. The lower threshold of rainfall is about 0.5 inches below

mean (about 3.6 inches in absolute value). The upper threshold of rainfall is about 1.3

inches above mean (about 5.4 inches in absolute value). When the amount of rainfall is

within the thresholds, the marginal effect of rainfall is insignificant. The differences of the

marginal effect of rainfall in both dry condition and flooding condition are statistically

different from the marginal effect of rainfall in normal weather condition. In particular,

when the amount of rainfall is below the lower threshold, one inch of rainfall increases

corn yield by 14 bushels per acre. On the contrary, about 4 bushels per acre corn yield

is lost as the amount of rainfall increases every inch beyond the upper threshold. The

threshold of temperature is around the mean, which is about 73.6 degrees Fahrenheit.
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The marginal effect of temperature is negative and significant both blew and above the

threshold. However, there is a statistically significant difference in marginal effects in

the two temperature regimes. The marginal damage is about 3 bushels per acre when

temperature is below the threshold and is about 5 bushels per acre when temperature is

above the threshold. The overall weather impact on corn yield in Indiana is revealed in

the middle two subplots in figure 3.3.
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Figure 3.3: Plots for the one-knot specification

As pointed out above, the upper threshold of temperature is redundant for Illinois,
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Michigan, Missouri, Ohio, and Wisconsin. Will inclusion of the redundant knot affect

our estimation? The answer is no. We estimated the one-knot specification model and

compared results to the two-knot specification. The estimated weather effects are very

similar. For example, we plot the posterior mean of corn yield against weather variables

based on the one-knot specification for Illinois and Michigan in figure 3.3. There is no

recognizable difference between the corresponding subplots for these two states in figure

3.1 and figure 3.3.

3.6 Conclusions

Using a sampling-based Bayesian approach, we estimate a yield model with a hierar-

chical structure. The linear trend has a county-specific random effect and a CRD-specific

slope. Weather impacts are captured by flexible linear-spline functions with endogenous

thresholds. We find the impacts of rainfall and temperature on corn yields to be non-

linear and asymmetric in most states in the Corn Belt. The temperature effect is linear in

only two out of eights states. Rainfall effect is non-linear in all states. Weather impacts

are also asymmetric. An excessive amount of heat causes more damage to corn yields

than a moderate amount of heat benefits corn yields in the northern states. Corn yield

is more responsive to droughts than to flooding in Ohio, Illinois, Indiana, and Michigan.

In general, corn yield deceases sharply as temperature increases above a threshold,

although estimated thresholds vary across states. A moderate amount of heat is beneficial

to corn yield in northern states. Drought is a big threat to corn yield in all states. Below

a threshold of about 2.5 to 4 inches, the marginal benefit of increasing the amount of

rainfall is large. In some states, corn yield stays insensitive to rainfall once the amount

of rainfall reaches a certain level. But in other states, an excess amount of rainfall (more
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than 5-6 inches) causes severe losses. Patterns of weather impacts tend to cluster in

geographically neighboring areas. Temperature effects differ between the north and the

south, while rainfall effects differ between the east and the west. Universally, corn yield

is concave in both weather variables, which is consistent with the notion of decreasing

marginal benefit of good weather. This finding has implications for the distribution of

corn yield, as we would discuss in greater detail in the next chapter.
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CHAPTER 4. WEATHER EFFECTS ON TREND,

VARIANCE, AND DISTRIBUTION OF CORN YIELD

Abstract

Favorable weather conditions for dryland corn production, including a proper amount

of heat and rainfall during the growing season, are critical factors determining yield

outcomes. Weather conditions, however, are randomly distributed across regions and over

time, thus influencing the temporal and geographical patterns of measured corn yield.

Failure to account for weather factors when estimating time trends and the variance

of yield can lead to spurious conclusions regarding technology improvement and yield

risk. The improving climate trend from 1980 to 2009 explains up to 20% of the observed

yield trend. Modeling weather impacts improves the estimation of the temporal pattern

of yield risk. Decreasing marginal benefit of weather partly explains why corn yield is

negatively skewed. Conditional on weather, the distribution of the unexplained residuals

from our yield model is symmetric in general.

4.1 Introduction

In rain-fed agricultural regions, weather conditions have substantial impacts on corn

productivity. Favorable weather conditions for dryland corn production, including a



www.manaraa.com

70

proper amount of heat and rainfall during the growing season, are critical factors deter-

mining yield outcomes. However, weather is seldom modeled in estimating yield trend,

yield risk, and the distribution of corn yield. Although the impact of weather on corn

yield is well studied, there is limited literature on the extend to which estimates of yield

trend and the variance of corn yield could be biased if weather impacts are not taken

into account. While researchers briefly explained their findings of negatively skewed yield

distribution as a result of weather effects, there has been no empirical study either to

reject or confirm the hypothesis. In this chapter, we estimate the impact of weather and

relate it to estimation of trend, variance, and distribution of corn yield.

Weather factors have a substantial impact on corn yields. Most studies found that

an increase in temperature does harm to corn yield and that an increase in precipitation

benefits corn yield (O’Brien, 1993; Lobell and Asner, 2003; Deschenes and Greenstone,

2007). On the other hand, McCarl et al. (2008) found that temperature has no signifi-

cant effect on corn yields. There is also evidence that response of corn yield to tempera-

ture/precipitation is not constant over the whole range of possible weather outcomes. In

fact, increasing heat within the range between 8◦ Celsius and 32◦ Celsius was found to be

beneficial to corn yield but increasing the temperature further beyond 34◦ Celsius would

incur yield losses (Schlenker et al., 2006b). Roberts and Schlenker (2009) found that

corn yield grows roughly linearly in temperature up to a threshold of 84◦ Fahrenheit,

above which yield growth declines sharply. Based on simulation models, Adams et al.

(1990) found that in the northern regions of the U.S. a modest increase in temperature

benefits crop yield but extremely hot and dry weather conditions decrease crop yields.

Another finding is that bad growing conditions typically cause more yield loss than good

growing conditions cause yield gain. For example, Schlenker and Roberts (2006) stud-
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ied county-level panel data of crop yield, temperature and precipitation from 1950 to

2004 in 2000 counties in the U.S. and found that an increase in temperature above 25◦

Celsius decreases corn yield growth rates at an increasing rate. By fitting a step func-

tion, an eighth-order polynomial function, and a piecewise linear function, Schlenker and

Roberts (2009) found that corn yield is not responsive to changes in temperature below

29◦ Celsius but decreases sharply as temperature increases above the threshold.

Despite the growing literature on how temperature and rainfall affect corn yields,

weather factors are not incorporated in most studies of productivity gains of crops.

Ramirez et al. (2003) briefly pointed out that their estimate of cotton yield trend might

be biased downwards because they did not account for negative weather impacts towards

the end of their sample. Alston et al. (2010) concluded that yield trends were slowing

down in recent years and that large disparities in productivity gains existed across states.

However, temporal and geographical weather patterns could have contributed to patterns

in their measured yield trends. In fact, climate trends were found, in several previous

studies, to be closely related to measured yield trends. Nicholls (1997) attributed 30%

to 50% of the increase in wheat yields in Australia since 1952 to an increasing trend in

temperature. Lobell and Asner (2003) found that a recent trend (1982-1998) in tem-

perature has increased the productivity of corn and soybeans. They pointed out that

accounting for the climate trend significantly reduced perceived productivity gains. By

regressing the yield trend on the temperature trend for selected counties in the U.S.,

they concluded that 25% of the corn yield trend and 32% of the soybean yield trend can

be explained by the trend in temperature.

Lobell and Asner (2003) were among the first to link climate trends to yield trends.

However, there are several limitations with their study. First, their results were based on
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a selective sample. Only counties with statistically significant negative correlation be-

tween temperature and corn yield were included. Second, these selected counties located

in different states were pooled together in the regression analysis. State-wise differences

in soil, technology, and other unobserved state-specific factors were not modeled. Third,

corn yield was restricted to respond constantly to changes in temperature and precipi-

tation. Finally, precipitation significantly affects corn yields but was excluded from the

trend analysis. Despite the limitations, this study and findings by Nicholls (1997) show

that taking into account weather factors may significantly alter yield trend estimates.

The importance of integrating weather factors into estimating yield risk has also

been overlooked in literature. The loss-cost ratio in the U.S. crop insurance program

has been declining in the Corn Belt in recent years.1 This has led researchers to doubt

the validity of the maintained assumption in premium rating of several crop insurance

programs, which is the hypothesis of constant coefficient of variation of crop yield (also

known as constant relative yield risk). Woodard et al. (2009) found evidence against

the hypothesis using recent corn yield data in Illinois. Harri et al. (2009a) found mixed

results using a larger sample. Failure to exclude possible confounding effects of changing

weather variability casts doubt on these results. Weather variables were included in a

study on the variance-stationarity of crop yields (McCarl et al., 2008) and in a report

that tested the hypothesis of constant relative risk (Coble et al., 2009). Both studies,

however, are limited by data and modeling issues. Both studies used annual instead of

growing season average temperature and precipitation data. Adams et al. (1990) pointed

out that crops are more sensitive to weather over relatively short periods of time. Annual

averages do not convey important shorter-term differences. Both studies were based on

state average data, which could be improved by using more disaggregated county-level

1The loss-cost ratio is calculated as indemnity divided by premium.



www.manaraa.com

73

data. Coble et al. (2009) incorrectly interpreted the residual risk not explained by the

model, which is a small portion of yield risk, as the yield risk itself.

Finally, the relation between weather impacts and the distribution of corn yield was

mentioned in literature, but has not been empirically studied. Empirical findings point

to negative corn yield skewness (Nelson and Preckel, 1989; Moss and Shonkwiler, 1993;

Ramirez, 1997; Goodwin and Ker, 1998; Ramirez et al., 2003). Negative skewness is

especially evident in corn belt states (Harri et al., 2009b). Decreasing marginal benefit

of favorable weather (Gallagher, 1987), the upper limit of yield imposed by technology

(Goodwin and Ker, 1998), and skewed rainfall distribution (Ramirez et al., 2003) were

conjectured as possible sources of crop yield skewness. But these hypotheses have not

been tested so far. Hennessy (2009b) was the first to put forward a theoretical expla-

nation. He suggested that the skewed distribution of the limiting production input (for

example, favorable weather conditions) could lead to crop yield being negatively skewed.

Further, Hennessy (2009a) explained that whenever the weather-conditioned mean yield

has diminishing marginal product with respect to a weather-conditioning index, then

there is a disposition toward negative yield skewness. This theoretical explanation has

not been empirically tested. Along a different vein, Du et al. (2010) empirically estimated

the relation between the distribution of crop yield and the the amount of fertilizer use.

Considering the importance of weather factors in determining crop yield, it is worthwhile

to empirically examine the relationship between weather effects and the distribution of

corn yield.

The rest of this chapter is organized as follows: in section 2 we set up a yield model

that incorporates weather factors. We estimate the model with a panel data of county-

level corn yields and matched temperature and precipitation. In section 3, we separate
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the climate trend from the yield trend. We also estimate the trend bias that results

from not considering weather factors. In section 4, we explore the relationship between

weather variability and the yield risk. In section 5, we relate weather effects to the

distribution of corn yield. In the last section, we present a brief conclusion.

4.2 A Yield Model with Weather Factors

In this section, we set up a yield model that incorporates weather impacts. We then

use county-level corn yields and matching growing season rainfall and temperature data

from 1980 to 2009 in 516 corn-planting counties to estimate the model.

4.2.1 The Yield Model

We consider corn yield to be composed of a linear time trend plus a function of

weather variables:

Y = β0+β1T+
∑

Wi∈{H, R}

[αi,1 min(0, (Wi−λi,l))+αi,2Wi+αi,3 max(0, (Wi−λi,u))]+ε (4.1)

where Y denotes corn yield, T denotes time, Wi denotes the weather variable. Here,

weather variables include rainfall R and heat H. ε denotes unexplained noise (the resid-

ual). To capture potentially different weather effects in different weather conditions, we

divide the whole range of temperature (or rainfall) into three parts with two thresholds

λi,l and λi,u. Values of the thresholds are state-specific and are estimated in a separate

step using a Bayesian approach. We use the mean values of the estimated posterior dis-

tribution of thresholds from results in chapter 3. β and α are parameters to be estimated.

The min and max operators serve as switches that turn on the specific α we want to

estimate as the weather variable falls into a specific range. To see this, we rewrite the
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model as:

Y = ˜β0,s + β1T + α1,sH + α2,sR + ε

α1,s ≡


α1,cl = α1,1 + α1,2 if H ≤ λ1,1

α1,nt = α1,2 if λ1,1 < H < λ1,2

α1,ht = α1,2 + α1,3 if H ≥ λ1,2

α2,s ≡


α2,dr = α2,1 + α2,2 if R ≤ λ2,1

α2,nr = α2,2 if λ2,1 < R < λ2,2

α2,f l = α2,2 + α2,3 if R ≥ λ2,2

(4.2)

Subscript s denotes the state of nature, which is defined by the threshold parameter λ.

The weather condition ‘dry’ (s = dr), for example, is defined as the amount of rainfall

falls below the lower threshold. Similarly, the other weather conditions, such as normal

rainfall (nr), flood (fl), cool (cl), normal temperature (nt), and hot (ht), are also defined

by the thresholds. Values of αi,s are allowed to change depending on weather conditions.

α1,s and α2,s measure the marginal effects of temperature and rainfall in each state of

nature. We do not restrict yield to respond constantly to changes in temperature or

rainfall across weather conditions. For example, one additional inch of rainfall in dry

years could result in a different amount of change in crop yields than in normal years.

We include rainfall and heat variables because they are found to be the primary

weather factors that determine corn yield outcomes. We use the average of monthly total

precipitation (in inches) from June to August as a measure of growing season rainfall.

We use the average of monthly mean temperature (in degrees Fahrenheit) from June to

August as a measure of growing season heat. We did not include multiple variables to

measure rainfall (or heat) to avoid the collinearity problem (Adams et al., 1990). We

use departures from normal values for both weather variables. Departures from normal
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values are calculated as the differences between observed values and the state averages

of the weather variables.

4.2.2 Data

We collected weather and yield data in major non-irrigating corn-production states

from 1980 to 2009. Those states are Illinois, Indiana, Iowa, Michigan, Minnesota, Mis-

souri, Ohio, and Wisconsin. County-level production and planted acreage data were

collected from the National Agricultural Statistics Service (NASS) to calculate yield per

planted acre. Observations with zero production or missing acreage data were deleted.

To focus our attention on major production areas, only counties with yield data in all

years from 1980 to 2009 were kept. Weather data were collected from the National

Oceanic and Atmospheric Administration (NOAA). We obtained data of monthly mean

temperature (MNTM) and total monthly precipitation (TPCP) from all weather stations

located in the eight states. For most of the weather stations, NOAA identified, in an

inventory file, the name of the county that each weather station was located. For sta-

tions not identified to any county, we found the nearest station with a county name (by

calculating distances between weather stations using latitude and longitude information)

and assigned the county name of the nearest station to the unidentified station. Most of

the counties are matched with at least one weather station. For counties with multiple

weather stations, we took the simple averages of weather records from all weather sta-

tions located in the county. For each year, county yields were matched with county-level

weather data. Observations without rainfall or temperature data were treated as missing

values and were excluded from our analysis.
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4.2.3 Estimation Results

Using county-level panel data of corn yields, temperature and precipitation, we esti-

mate the yield model (4.1). For the linear time trend, we assume the intercept term β0 to

be county-specific and the trend term β1 to vary across Crop Reporting Districts (CRDs).

We estimate the model using fixed-effect regression and repeat the regression analysis

state-by-state. Standard errors of coefficients are corrected for potential heteroskedastic-

ity and/or serial correlation in the residuals by using the Huber/White/sandwich type

robust standard error estimator.

Estimated coefficients are shown in table 4.1 with robust standard errors in paren-

theses. β̄0 is the state average of the county-specific intercept term β0. β1 is the CRD

specific corn yield trend, the annual increase in yield measured in bushels per acre per

year. There are nine CRDs in each state except Michigan and Minnesota, where we only

have data for seven CRDs for each state. Trend estimates range from low of nearly zero

in some CRDs in Ohio to as high as about 2.5 bushels per acre per year in Illinois, Iowa,

and Minnesota. Trend estimates are positive and statistically significant in most CRDs

as expected.

For most states, αi,2 measures the marginal effect of temperature (rainfall) on corn

yield in normal weather conditions. αi,1 and αi,3 measure the difference between the

marginal effect in other weather conditions and the marginal effects in normal weather

conditions. In Indiana, however, the the lower and upper temperature thresholds esti-

mates are too close to each other that we assume the one-threshold specification for the

temperature effect. Thus, for Indiana, α1,2 measures the marginal effect of temperature

when temperature is below the threshold, and α1,3 measures the difference in marginal

effect when temperature is above the threshold.
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Table 4.1: Regression Results of the Yield Model with Weather Effects

IL IN IA MI MN MO OH WI

α1,1 4.75 2.13 2.93 4.70 3.53 1.78 3.82 6.64

( 0.52 ) ( 0.66 ) ( 0.80 ) ( 0.87 ) ( 0.92 ) ( 1.07 ) ( 1.27 ) ( 1.96 )

α1,2 -6.07 -5.74 -5.20 -1.71 -1.58 -7.82 -7.05 -5.42

( 0.32 ) ( 0.56 ) ( 0.65 ) ( 0.43 ) ( 0.57 ) ( 0.72 ) ( 1.16 ) ( 1.91 )

α1,3 -0.94 -6.08 0.46 -9.44 1.65 -1.47 -3.05

( 0.71 ) ( 1.57 ) ( 0.65 ) ( 1.24 ) ( 1.17 ) ( 1.87 ) ( 2.69 )

α2,1 13.06 11.11 11.94 12.09 10.16 5.54 13.49 10.30

( 2.51 ) ( 1.26 ) ( 1.16 ) ( 2.31 ) ( 1.87 ) ( 1.51 ) ( 1.78 ) ( 1.79 )

α2,2 6.00 1.92 2.13 2.31 -2.27 1.18 3.42 3.38

( 0.72 ) ( 0.55 ) ( 0.42 ) ( 1.35 ) ( 1.24 ) ( 0.87 ) ( 1.02 ) ( 0.90 )

α2,3 -7.33 -5.26 -16.76 -2.67 -11.96 -6.44 -3.09 -8.12

( 0.95 ) ( 1.51 ) ( 0.83 ) ( 1.89 ) ( 4.33 ) ( 1.64 ) ( 1.76 ) ( 1.50 )

β1 CRD 10 2.39 1.81 2.53 2.36 1.74 1.47 0.86

( 0.09 ) ( 0.10 ) ( 0.07 ) ( 0.35 ) ( 0.15 ) ( 0.12 ) ( 0.13 )

β1 CRD 20 1.81 1.77 1.94 1.02 1.73 1.53 1.01

( 0.10 ) ( 0.14 ) ( 0.08 ) ( 0.16 ) ( 0.16 ) ( 0.07 ) ( 0.15 )

β1 CRD 30 2.39 1.66 1.97 1.72 1.68 1.10 0.84

( 0.09 ) ( 0.10 ) ( 0.10 ) ( 0.21 ) ( 0.15 ) ( 0.12 ) ( 0.15 )

β1 CRD 40 2.24 1.67 2.36 2.85 1.89 1.68 1.35

( 0.15 ) ( 0.11 ) ( 0.11 ) ( 0.10 ) ( 0.19 ) ( 0.09 ) ( 0.12 )

β1 CRD 50 2.18 1.67 2.32 1.34 2.24 1.51 1.78 1.15

( 0.08 ) ( 0.08 ) ( 0.08 ) ( 0.11 ) ( 0.12 ) ( 0.16 ) ( 0.15 ) ( 0.13 )

β1 CRD 60 1.74 1.70 2.22 1.75 1.50 1.70 0.30 0.76

( 0.09 ) ( 0.05 ) ( 0.05 ) ( 0.07 ) ( 0.19 ) ( 0.23 ) ( 0.42 ) ( 0.12 )

β1 CRD 70 1.76 1.83 2.05 1.59 2.80 2.08 1.56 1.43

( 0.07 ) ( 0.08 ) ( 0.13 ) ( 0.15 ) ( 0.09 ) ( 0.11 ) ( 0.14 ) ( 0.15 )

β1 CRD 80 1.74 1.47 1.82 1.40 2.23 2.47 1.03 1.69

( 0.16 ) ( 0.12 ) ( 0.07 ) ( 0.12 ) ( 0.06 ) ( 0.01 ) ( 0.02 ) ( 0.08 )

β1 CRD 90 1.58 1.13 1.92 1.80 2.24 2.00 0.94 1.14

( 0.14 ) ( 0.10 ) ( 0.10 ) ( 0.09 ) ( 0.12 ) ( 0.05 ) ( 0.24 ) ( 0.10 )

β̄0 104.09 106.75 109.47 77.87 87.39 78.02 102.49 91.01

( 0.71 ) ( 1.28 ) ( 1.27 ) ( 0.85 ) ( 1.42 ) ( 1.22 ) ( 1.64 ) ( 4.63 )
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To better interpret estimation results, we calculate the values of αi,s as defined in

(4.2). αi,s is the estimate of the marginal effect of rainfall (or temperature) on corn yield

in a given weather condition. Results are shown in table 4.2. α1,s measures changes in

corn yield in response to one degree Fahrenheit increase in the growing season mean tem-

perature in a given weather condition. Values of α1,s are mostly negative and significant,

indicating that in general, additional heat decreases corn yields. In Iowa, for example, as

the mean temperature in the growing season increases one degree Fahrenheit, depending

on cold, normal or hot weather conditions, corn yield decreases about 2.3 bushels/acre,

5.2 bushels/acre, and 11.3 bushels/acre respectively. Regardless of weather conditions,

values of α1 are negative and significant in Illinois, Indiana, Iowa, Missouri, and Ohio.

This indicates that an increase in mean temperature in the growing season always leads

to corn yield losses in these states, which is consistent with findings in literature (Desch-

enes and Greenstone, 2007). Values of α1,cl are positive and significant in three northern

states: Michigan, Minnesota, and Wisconsin. In colder than usual years, an increase in

mean temperature is beneficial in these states. Corn yields increase about one to three

bushels per acre as the mean temperature increases one degree Fahrenheit in these states.

Still, values of α1,ht are negative in Michigan, Minnesota, and Wisconsin as well as in all

other states, indicating that heat in the hotter than usual growing condition is harmful

to corn yields regardless of location. Similar findings about temperature effects in the

northern regions of the U.S. were documented in literature (Adams et al., 1990). Corn

yields lost to one degree Fahrenheit increase in mean temperature in hotter than usual

years ranges from 1.3 bushels/acre in Michigan to 11.3 bushels/acre in Iowa.
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Table 4.2: Marginal Effects of Temperature and Rainfall

IL IN IA MI MN MO OH WI

α1,cl -1.32 -3.62 -2.27 2.99 1.96 -6.03 -3.22 1.22

( 0.33 ) ( 0.22 ) ( 0.22 ) ( 0.56 ) ( 0.45 ) ( 0.52 ) ( 0.28 ) ( 0.18 )

α1,nt -6.07 -5.74 -5.20 -1.71 -1.58 -7.82 -7.05 -5.42

( 0.32 ) ( 0.56 ) ( 0.65 ) ( 0.43 ) ( 0.57 ) ( 0.72 ) ( 1.16 ) ( 1.91 )

α1,ht -7.01 -11.28 -1.25 -11.02 -6.17 -8.52 -8.47

( 0.51 ) ( 1.08 ) ( 0.40 ) ( 1.07 ) ( 0.63 ) ( 0.99 ) ( 1.44 )

α2,dr 19.06 13.03 14.07 14.40 7.89 6.72 16.92 13.68

( 1.96 ) ( 0.88 ) ( 0.97 ) ( 1.37 ) ( 1.02 ) ( 0.96 ) ( 1.35 ) ( 1.26 )

α2,nr 6.00 1.92 2.13 2.31 -2.27 1.18 3.42 3.38

( 0.72 ) ( 0.55 ) ( 0.42 ) ( 1.35 ) ( 1.24 ) ( 0.87 ) ( 1.02 ) ( 0.90 )

α2,f l -1.34 -3.34 -14.63 -0.35 -14.23 -5.26 0.34 -4.74

( 0.36 ) ( 1.17 ) ( 0.61 ) ( 0.82 ) ( 3.67 ) ( 1.11 ) ( 0.91 ) ( 0.77 )

Rainfall, on the other hand, is mostly beneficial to corn yields. Values of α2,s are

positive and significant in all states when there is a lack of rainfall (in dry weather

condition). One additional inch of precipitation increases corn yield around seven to

nineteen bushels per acre in dry years and one to six bushels per acre in normal years.

Values of α2,f l are negative and significant in most states. Too much rainfall significantly

reduces corn yields in all states except Michigan and Ohio.

Two features of the impact of weather are reflected in results in table 4.2. First,

the marginal benefit of favorable weather is decreasing as the weather condition gets
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better. In general, a decrease in growing season mean temperature and an increase in

growing season mean precipitation are both beneficial to corn yield. Yet the marginal

benefit of decreasing temperature declines as it gets cooler, so does the marginal benefit

of increasing rainfall as drought relieves. Favorable weather, viewed as an agricultural

production input, has a decreasing marginal product just as any other production input.

Second, there are geographical differences in how corn yields respond to heat and rainfall.

In general, heat is less detrimental to corn yields in the northern states such as Minnesota,

Michigan, and Wisconsin than in other corn belt states such as Illinois, Indiana, Iowa,

and Ohio. Excessive heat, however, is equally harmful in Minnesota as in Iowa. The

impact of rainfall is less of a clear-cut.

4.3 Weather Effects on Yield Trend

In light of the significant impacts of weather, a climate trend or extreme weather

conditions at the beginning or towards the end of the sample period might confound

estimation of the yield trend. To see this, consider the yield model (4.2) where the

weather variable W , which stands for either rainfall or temperature, has a time trend:

Wt = ω0 + ω1T (4.3)

By substituting (4.3) into (4.2), we have

Yt = β0 + β1T + α(ω0 + ω1T ) + ε

= β0 + αω0 + (β1 + αω1)T + ε (4.4)

If the researcher estimated the yield trend without taking into account weather factors,

the regression equation would become:

Yt = β̃0 + β̃1T + ε̃ (4.5)
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where β̃1 is actually an estimate of the linear combination of true model parameters

(β1 + αω1). The measured trend β̃1 would be the sum of the actual technology trend

of crop yield β1 and the climate trend ω1 multiplied by the weather impact parameter

α. If the weather variable W is a favorable input, for example, a moderate amount of

rainfall, then α > 0. And if the climate trend is such that rainfall is increasing over time

ω1 > 0, then αω1 > 0 and β̃1 > β1. The measured trend, in this case, is an upward

biased estimator of the actual yield trend. In fact, either an increasing trend in the

favorable weather input (α > 0 and ω1 > 0) or a decreasing trend in the adverse weather

input (α < 0 and ω1 < 0) leads to an inflated trend estimate. In other words, when the

growing conditions are getting better over time, there would be an upward bias in trend

estimation if weather is not taken into account. On the other hand, worsening growing

conditions lead to underestimated yield trends.

Conclusion 1: In models that do not consider weather factors, the yield trend is

inflated (underestimated) in situations of improving (worsening) weather.

4.3.1 Estimating the Bias

To estimate the bias of crop yield trend caused by not including weather factors in the

model, we compare the trend estimates from models with or without weather variables.

First, we use the whole sample (from 1980 to 2009) to estimate the bias. We estimate

model (4.5), which does not include weather variables. We allow the intercept term to be

county-specific and the trend term to be CRD-specific. We repeat the regression state-by-

state. We then compare the trend estimate confounded by weather effects β̃1 with the true

yield trend β1 estimated by fitting model (4.1). We calculate the percentage difference

between the two estimates β̃1−β1
β1

for each crop reporting district. We then calculate the
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state average of the bias using planted acres as weights. The percentage difference is an

indication of the estimation bias due to confounding weather effects. Table 4.3 lists the

percentage biases. State average differences are all positive. It indicates that growing

conditions were getting better in general, resulting in higher observed yield trends than

true productivity grains. Without considering weather effects, yield trends are inflated

by up to 20% state-wide. The percentage differences are on average 14%, 15%, 14%,

18%, and 11% in Illinois, Indiana, Iowa, Missouri, and Ohio.

Table 4.3: Percentage Differences between Trend Estimates from Models with or without

Weather Factors (1980-2009)

IL IN IA MI MN MO OH WI

CRD 10 6% 22% 0% 3% 21% 5% -15%

CRD 20 6% 22% 16% 2% 0% 24% -6% -14%

CRD 30 14% 8% 13% 8% 19% 11% -15%

CRD 40 15% 16% 11% 15% 9% 7%

CRD 50 15% 10% 10% 9% 3% 25% 2% -1%

CRD 60 22% 6% 15% 1% -6% 21% 19% -7%

CRD 70 13% 3% 17% 4% 0% 20% 4% 9%

CRD 80 22% 13% 34% 10% 11% -1% 51% 4%

CRD 90 24% 44% 30% 0% 2% 13% 16% 10%

State Average 14% 15% 14% 5% 3% 18% 11% 0%

The bias due to not considering weather effects is larger for samples of a short time

period. This is because weather conditions are usually geographically correlated. Adverse
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weather would probably affect most observations in a given year. Since observations

in one year compose a large proportion of the short time sample, the occurrence of

adverse weather is more likely to bias the overall result. In studies of structural change

in productivity gains, it is common practice to divide the whole sample period into

segments and to estimate yield trends of each segment and to compare them. Not

considering weather factors, and especially adverse weather conditions at the beginning

or towards the end of a sample period, could invalidate the results. We illustrate this

with an example. By estimating annual productivity growth rates during 1990-2002

and comparing them to estimates prior to 1990, Alston et al. (2010) concluded that

productivity gains in corn production was slowing down in major corn belt states. And

their estimated productivity growth rates during 1990-2002 (presented in row 12 in table

4.4) were dramatically different across seemingly homogenous corn producing states.

Estimated productivity gains were much higher for Iowa and Minnesota than for Indiana

and Ohio. Ohio’s number was incredibly small.

Before concluding that Ohio’s productivity growth was in fact low, one should account

for the state-wide severe drought that occurred at the end of the sample period. We

calculated the percentage differences between corn yield trends of 1990-2002 estimated

from models with or without considering weather factors. To make it comparable with

results by Alston et al. (2010), measured in percentage terms, we estimate yield trends

in percentage terms by replacing yield with the natural log of yield as the dependent

variable in our regressions. We estimate model (4.1) with observations from 1980 to

2002 and allow β to be different for 1980-1989 and 1990-2002. We then calculate the

percentage difference between the true trend estimate β1 of the 1990-2002 period and

the biased trend estimate β̃1 using the 1990-2002 sub-sample.
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Table 4.4: Percentage Differences between Trend Estimates from Models with or without

Weather Factors (1990-2002)

IL IN IA MI MN MO OH

CRD 10 17% 1% -17% 9% -33% -72%

CRD 20 11% -24% 29% 2% -2% -70%

CRD 30 -1% -63% 24% -10% -44% -87%

CRD 40 -18% -10% -13% 8% -43% -97%

CRD 50 18% -45% 68% 8% -2% -49% -54%

CRD 60 67% -78% 150% -17% -7% -22% -53%

CRD 70 3% -32% -25% -22% 16% -15% -173%

CRD 80 -44% -64% 9% -33% 113% -54% -94%

CRD 90 -44% -13% 38% -47% 63% -58% -17%

State average bias 9% -33% 31% -21% 39% -37% -86%

Productivity growth rates

(Alston et al., 2010) 1.03% 0.89% 2.37% 0.76% 1.91% 1.02% 0.02%

Biased trend estimates 1.48% 0.98% 2.56% 0.79% 3.64% 1.59% -0.03%

Correct trend estimates 1.40% 1.42% 2.09% 1.01% 3.02% 2.52% 0.88%

Results are shown in table 4.42. Not considering weather effects leads to an inflation

to the yield trend by 31% in Iowa and 39% in Minnesota on average. On the contrary,

yield trends in Indiana, Michigan, Missouri, and Ohio are underestimated by 33%, 21%,

37%, and 86% respectively. For comparison, we list the state average trend estimates

2We do not present bias calculations for Wisconsin because the true trend estimate β1 is close to

zero in some CRDs in Wisconsin. In this case, the percentage bias estimate β̃1−β1

β1
blows up due to the

near zero denominator. The absolute difference |β̃1− β1| might be a better measure of bias in this case.
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from the model without considering weather in row 13 and state average trend estimates

from the model considering weather in row 14. Trend estimates in row 13 covary in

the same direction with productivity growth rates estimated by Alston et al. (2010) in

most states, indicating that differences in productivity growth rates are mainly driven

by differences in estimated yield trends. However, trend estimates in row 13 are biased

by not considering weather.

4.4 Weather Effects on Yield Risk

Weather factors also play a role in determining observed yield risk. For yield model

(4.2), the variance of crop yield is:

σ2
Y = α2

1σ
2
H + 2α1α2Cov(R,H) + α2

2σ
2
R + σ2

ε (4.6)

where σ2 denotes variance of the variable in subscript. Variance of crop yield σ2
Y depends

on the weather impact parameter α, variability of weather variables σ2
R and σ2

H , the

covariance of weather variables Cov(R,H), and the variability of unexplained residuals

σ2
ε . If everything else is unchanged, an increase (a decrease) in either σ2

H or σ2
R leads

to an increase (a decrease) in σ2
Y . If α1α2 < 0 and Cov(R,H) < 0 then an increase (a

decrease) in Cov(R,H) leads to a decrease (an increase) in σ2
Y .

Conclusion 2: If the residual risk and the response of yields to weather are constant

over time, then an increase (a decline) in weather variability increases (decreases) the

observed yield risk. If the amount of rainfall and temperature are negatively correlated

and have opposite impacts on corn yields, then the weaker the correlation is, the smaller

the observed yield risk would be.

Conclusion 2 shows that observed changes in yield risk, measured by the variance of

yield, could be due to changes in weather variability or how weather variables covary with
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each other, rather than due to changes in management skills or technology. Researchers

usually have no more than 50 years of yield data. Temporal patterns of variance and

covariance of weather variables in such a relatively short period of time, compared with

the time length for real climate changes to happen, are largely a result of random sam-

pling. Thus, we need to separate confounding weather effects from observed yield risk

to obtain conclusions about how changes in management skills or technology have led to

changes in yield risk that should be expected to be sustainable into the future.

Variance of yield can be decomposed into two parts. One relates to the response of

yields to weather variability α2
1σ

2
H+2α1α2Cov(R,H)+α2

2σ
2
R. Another is the unexplained

residual risk σ2
ε . The first part is the major source of yield risk for dryland crops.

Conclusions about the second part σ2
ε should not be confounded with conclusions about

total yield risk σ2
Y . Consider, for example, if we conclude that the coefficient of variation

of the residual risk is constant over time: σε
E(Y )

= c, and that yield is upward trending

∂E(Y )
∂T

> 0, as is usually the case. Furthermore, assume that yield variability related

to weather [α2
1σ

2
H + 2α1α2Cov(R,H) + α2

2σ
2
R] is constant over time. Constant [α2

1σ
2
H +

2α1α2Cov(R,H)+α2
2σ

2
R] is guaranteed by the assumption of stationary weather plus the

assumption of weather having constant impact on yield over time. Then we have:

σ2
Y

E(Y )2
=

(α2
1σ

2
H + 2α1α2Cov(R,H) + α2

2σ
2
R) + σ2

ε

[E(Y )]2

=
(α2

1σ
2
H + 2α1α2Cov(R,H) + α2

2σ
2
R)

[E(Y )]2
+ c2

By assumption,
∂(α2

1σ
2
H + 2α1α2Cov(R,H) + α2

2σ
2
R)

∂T
= 0

∂E(Y )

∂T
> 0

Denote: U ≡ α2
1σ

2
H + 2α1α2Cov(R,H) + α2

2σ
2
R

V ≡ [E(Y )] (4.7)
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Then,
∂( U

V 2 )

∂T
=

∂U
∂T
V 2 − 2UV ∂V

∂T

V 4

=
−2U ∂V

∂T

V 3
< 0

So,
∂(

σ2
Y

[E(Y )]2
)

∂T
=

∂( U
V 2 )

∂T
+
∂c2

∂T

=
∂( U

V 2 )

∂T
< 0

Since:
∂(

σ2
Y

[E(Y )]2
)

∂T
= 2

σY
E(Y )

×
∂( σY

E(Y )
)

∂T

And,
σY
E(Y )

> 0

So,
∂( σY

E(Y )
)

∂T
< 0 (4.8)

Conclusion 3: If crop yield is trending upwards, weather is stationary, and weather

has the same impact on yield over time, then constant coefficient of variation for the

residual risk implies that crop yield risk has a decreasing coefficient of variation.

4.4.1 Limitations in Previous Studies

An important task in studies of yield risk is to test whether the coefficient of variation,

defined as standard deviation divided by mean, is constant over time. Validity of constant

coefficient of variation of crop yield, also known as constant relative yield risk, is directly

related to the actuarial fairness of crop insurance premium rating. Studies to date

have not reached consensus. By applying conclusion 2 and conclusion 3, we point out

limitations in some of previous studies that could potentially invalidate their results.

Woodard et al. (2009) found that recent corn yields in Illinois supported decreasing

relative risk. But weather factors were not included in their model. The observed change

in variance of yield could be due to changes in weather variability in the sample. They
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attributed the decline in observed yield risk to better management and improved tech-

nology but they did not exclude the alternative explanation that weather variability was

declining over the sample period. To examine whether the variability of weather changed

in Illinois in recent years, we divide our weather data into two periods: the first period

from 1980 to 1994 and the second from 1995 to 2009. Standard deviations of rainfall and

temperature are both smaller in the second period than in the first period. Standard

deviation of average rainfall dropped from 1.53 to 1.17. The standard deviation of tem-

perature dropped from 2.94 to 2.53. The covariance between rainfall and temperature

were negative in both periods and increased from -1.55 to -0.82. Estimation results in

table 4.2 show that in most weather conditions, we have α1 < 0 and α2 > 0 for Illinois.

The occurrence of flood, defined as the amount of rainfall exceeds the upper threshold, is

about 35% of the time. Only in these circumstances, do we have α2 < 0. On average, the

weather impact is such that α1α2 < 0. Applying conclusion 2, changes in the variance

of rainfall, the variance of temperature, and the covariance of the two variables all lead

to a decrease in yield variance.

To be more careful about the situation when the amount of rainfall exceeds the upper

threshold, we separately analyze two sub-samples. In the first sub-sample, the amount

of rainfall is less than the upper threshold, and we have α1 < 0 and α2 > 0, so conclusion

2 holds. The standard deviation of rainfall decreases from 0.82 in the first period to

0.65 in the second period. The standard deviation of temperature decreased as well from

2.97 to 2.52. The covariance between rainfall and temperature were negative in both

periods and increased from -0.83 to -0.48. Applying conclusion 2, changes in variance

and covariance of weather variables all lead to a decrease in yield variance. In the second

sub-sample, the amount of rainfall exceeds the upper threshold, so we have α1 < 0 and
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α2 < 0. In this case, we need to modify the last sentence of conclusion 2 into “if α1 < 0

and α2 < 0, and Cov(R,H) < 0 then a decrease (an increase) in Cov(R,H) leads to

a decrease (an increase) in σ2
Y .” For the flood sub-sample, the standard deviation of

temperature and rainfall decreased, 2.56 to 2.38 and 1.01 to 0.87 respectively. And the

covariance decreased from -0.09 to -0.11. Applying the modified conclusion 2, again,

changes in variance and covariance of weather variables all lead to a decrease in the

variance of corn yield. The impact of weather variability on the whole sample is the

weighted average of impacts on the two sub-samples. Thus, the aggregated impact of

the weather pattern in Illinois is that it led to a decreasing pattern in yield risk. In sum,

this analysis shows that without accounting for weather changes in the sample period, it

was premature to conclude that the coefficient of variation of corn yield decreased over

time.

Coble et al. (2009) took into account weather factors. However, they based their

hypothesis testing on the estimated variance of residuals (σ2
ε ). They claimed that no

evidence was found against constant coefficient of variation for corn yields, when in fact

it was all about testing constant coefficient of variation of the residual risk. According to

conclusion 3, constant coefficient of variation of the residual risk implies, if other factors

unchanged, that the overall relative yield risk is decreasing over time.

4.4.2 Improving Estimation by Incorporating Weather Effects

To fix the problems mentioned above, we base our analysis of yield risk on yield

model (4.2) that incorporates weather factors. We estimate how absolute and relative

risks of corn yield change over time. To relate estimated variance to hypotheses testing,

we make an additional assumption. Following Harri et al. (2009a), we assume that the
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variance of yield is a function of expected yield:

σ2
i,t = a[E(Yi,t)]

b (4.9)

where σ2 denotes the variance of crop yield, E(Y ) denotes expected crop yield. a and b

are parameters to be estimated. By taking the natural logarithm of (4.9), we obtain a

linear regression equation:

ln(σ2
i,t) = ln(a) + b ln(E(Yi,t)) + ηi,t. (4.10)

By estimating the parameter b, we can draw conclusions about the variance σ2 as follows.

If b = 0, then σ2 = a, variance is homogeneous over time. If b = 2, then σ2 = a[E(Y )]2 or

σ
E(Y )

= a
1
2 , the coefficient of variation equals a

1
2 and is constant over time. In general, the

coefficient of variation is σ
E(Y )

= a
1
2 [E(Y )]

b−2
2 . If 0 < b < 2, then b−2

2
< 0, the coefficient

of variation σ
E(Y )

is decreasing in E(Y ). For upward trending yield, E(Y ) increases with

T , so the coefficient of variation σ
E(Y )

decreases over time. However, variance σ2 increases

over time. If b > 2, then b−2
2
> 0, the coefficient of variation σ

E(Y )
is increasing in both

E(Y ) and T . So b > 2 corresponds to increasing coefficient of variation. Finally, for

b < 0, σ2 is decreasing in E(Y ) and T , thus corresponding to the case of decreasing

absolute risk. Relationships between values of b and conclusions about the absolute risk

(variance) and the relative risk (coefficient of variation) are listed in table 4.5.
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Table 4.5: Relationship between b and Hypothesis Testing

b Absolute risk Relative risk

b < 0 Decreasing absolute risk (DAR) Decreasing relative risk (DRR)

b = 0 Constant absolute risk (CAR) Decreasing relative risk (DRR)

0 < b < 2 Increasing absolute risk (IAR) Decreasing relative risk (DRR)

b = 2 Increasing absolute risk (IAR) Constant relative risk (CRR)

b > 2 Increasing absolute risk (IAR) Increasing relative risk (IRR)

We now estimate the heteroskedasticity parameter b and test the hypotheses about

the yield risk. Based on our yield model, the yield deviation ui,t is defined as:

ui,t ≡ α1,sHi,t + α2,sRi,t + εi,t. (4.11)

The yield deviation is the sum of the weather induced yield deviation (α1,sH+α2,sR) and

the residual term ε. We simulate the yield deviation ui,t using estimated α in table 4.2

and regression residuals ε. For each county in our sample, we simulate R and H from their

29 years’ historical data with equal probability. We evaluate the yield deviations with

the weather draws. By simulating weather variables with equal probability from their

historical distribution, we isolate the effects of possible changes in weather variability.

Denote ū as the mean of ui,t in a given state. ū could be different from zero. We

recenter the yield deviations by subtracting the mean of yield deviations. We square

the recentered yield deviation. We use (ui,t − ū)2 as an estimator of the yield risk σ2 in

equation (4.10). We regress the natural log of the squared yield deviation on the natural

log of estimated trend yield to obtain estimates of b:

ln((ui,t − ū)2) = c+ b ln(Ŷi,t) + η (4.12)
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Here, Ŷi,t is the predicted trend yield from yield model (4.1).

Table 4.6: Hypothesis Testing on Yield Risk

b H0 : b = 0 H0 : b = 2 Total yield risk

IL -0.42 Reject Reject DAR

IN 0.005 Fail to reject Reject CAR

IA -0.64 Reject Reject DAR

MI 0.96 Reject Reject IAR and DRR

MN 0.34 Reject Reject IAR and DRR

MO 0.11 Fail to reject Reject CAR

OH 0.77 Reject Reject IAR and DRR

WI 1.60 Reject Reject IAR and DRR

Table 4.6 shows estimated b in each state and the corresponding conclusions on hy-

pothesis testing. b ranges from -0.64 in Iowa to 1.6 in Wisconsin. There is a wide variation

in how yield risk evolves. We test the hypothesis of constant absolute risk (b = 0) and

the hypothesis of constant relative risk (b = 2). The hypothesis of constant absolute

yield risk is rejected in six out of eight states. The hypothesis of constant coefficient of

variation is rejected in all eight states. The absolute yield risk is found to be decreasing

over time in Illinois and Iowa, constant over time in Indiana and Missouri. In Minnesota,

Michigan, Wisconsin, and Ohio, the absolute yield risk is increasing over time but the

relative yield risk is decreasing over time. The relative yield risk is decreasing over time,

which implies that crop insurance rating based on the assumption of constant coefficient

of variation would overcharge in most states.
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4.5 Weather Effects on Yield Distribution

Empirical findings suggest that corn yield is negatively distributed (Nelson and

Preckel, 1989; Moss and Shonkwiler, 1993; Ramirez, 1997; Goodwin and Ker, 1998;

Ramirez et al., 2003). Based on our sample of corn yields, histograms of residuals from

regressing yield on a time trend also show that corn yield is negatively skewed (figure 4.1).

From the perspective of weather, there are two conjectures that explain the skewness of

crop yield distribution. One conjecture says that the skewness of yield is determined

by the skewness of weather variables (Ramirez et al., 2003). The other conjecture says

that how yields respond to weather determines the skewness of yield (Gallagher, 1987;

Hennessy, 2009a).

The logic behind the first conjecture is that if the favorable weather variables, rainfall

and the negative of temperature, are negatively skewed and if corn yield increases pro-

portionally to the favorable weather variable, then the distribution of corn yield would

be negatively skewed. Our data and estimation results, however, show that this is not

the case for corn yields in the Corn Belt. Figure 4.2 and figure 4.3 show that rainfall

is in fact positively skewed and the distribution of temperature is almost symmetric.

Furthermore, according to our analysis, corn yield is not proportional to but is concave

in favorable weather variables.
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Figure 4.1: Histograms of residuals from regressing yield on a time trend, by state

In what follows, we offer both theoretical proofs and empirical support to the sec-

ond conjecture that the negatively skewed distribution of corn yield is a result of the

decreasing marginal benefit of good weather. Our approach is that we decompose the

yield deviation into a weather-induced deviation part and the residual part. First, we

prove that due to the concavity of the yield function, the weather-induced deviation is

negatively skewed. Then, we show that after taking into account weather impacts, the

residuals are almost symmetrically distributed.
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Figure 4.3: Histograms of growing season average temperature, by state

4.5.1 A Special Case

To prove that the weather-induced deviation is negatively skewed because yield is a

concave function in weather variables, we first examine a special case where the distri-
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bution of the weather variable is symmetric and yield is a monotone function of weather

variables. Denote f(.) as the yield function, W as the weather variable. If f(.) is a

concave function, then by Jensen’s Inequality, E[f(W )] < f [E(W )]. If W is symmetric,

then Prob[W ≤ E(W )] = 1
2
. And if f(.) is monotone, then Prob[f(W ) ≤ f [E(W )]] = 1

2
,

which means that f [E(W )] is the median of f(W ). Thus, the mean of f(W ) is less than

the medium of f(W ), f(W ) is negatively skewed.

Conclusion 4: If the distribution of W is symmetric, f(.) is a monotone and

concave function, then f(W ) is negatively skewed.

The intuition behind conclusion 4 is illustrated in panel (a) of figure 4.4. In this

example, 1000 draws of W are simulated from a normal distribution. The probability

density function of W is plot in red. An increasing and concave yield function f(.) is plot

in blue. We evaluate the yield function at the 1000 draws of W and draw the histogram

of simulated weather-induced deviation y = f(W ). Note that the simulated distribution

of y is negatively skewed. To see why this is the case, we pick three values of W : when

W is low (wL), medium (wM), and high (wH) and increase W with the same amount.

Since the yield function f(.) is concave, the change in y is larger for wL but smaller for

wH . As a result, the probability density function of W is transformed by function f(.)

to the probability density function of y in such a way that the left tail is stretched while

the middle mass and the right tail are squeezed. Thus, the distribution of y is negatively

skewed.
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Figure 4.4: Concave transformation and negative skewness

4.5.2 Relaxing the Assumptions

In conclusion 4, we assume that the distribution of W is symmetric. The distribution

of temperature is almost symmetric, which is consistent with this assumption. But the

distribution of rainfall is positively skewed in most states. What happens if we relax

the symmetric assumption? van Zwet (1964) proved that if the skewness statistics of a

random variable W exist, then the transformed random variable y = f(W ) has a smaller

skewness statistics than W whenever f(.) is increasing and concave. This is to say that if
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W is symmetric, then the weather-induced yield deviation is for sure negatively skewed,

as in the case of conclusion 4. If W is positively skewed, then the distribution of the

weather-induced yield deviation would have a smaller skewness statistics, i.e. it will be

either less positively skewed, symmetric, or negatively skewed. But if the curvature of

the concave function is high enough then the left tail of the distribution of W will be

stretched out enough to transform the distribution of f(W ) to be negatively skewed. As

we will see, this is the case supported by data.

Another assumption in conclusion 4 is that the yield function f(.) is monotone. It

is the case for weather impacts in Ohio, where both a decrease in temperature and an

increase in rainfall always increase corn yields. In most other states, however, rainfall is

beneficial only up to a certain level. What happens if we relax the monotone assumption?

In panels (b), (c), and (d) of figure 4.4, we illustrate with examples. Everything else

stays the same as in panel (a), we change the slope of the rightmost segment of the

yield function to negative so that the f(.) is not monotone. Similar to panel (a), the

left tail of the distribution of W is stretched and the middle mass is squeezed after

the concave transformation. In panel (b), the slope of the rightmost segment of f(.) is

flatter so the right tail of the distribution of W is squeezed and placed towards the right

of the distribution of f(W ). In panel (c), the slope of the rightmost segment of f(.)

is stepper so that the right tail of the distribution of W is stretched and placed in the

middle of the distribution of f(W ). In either case, the simulated distribution of f(W ) is

negatively skewed. One observation we make is that for most states in our sample, the

right tail of the distribution of W is thin 3, so it doesn’t matter much how this part of

probability mass is transformed. In panel (d) of figure 4.4, we illustrate the case when

3Refer to figure 4.2 and figure 4.3. In those figures, the vertical lines with the letter ‘k’ on top mark
the thresholds.
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the two thresholds on the yield function curve are close to each other. In this case, the

middle mass of the distribution of W shrinks. The simulated distribution of f(W ) is still

negatively skewed.

4.5.3 Empirical Results

The above derivation indicates that the concavity of the yield function drives the

distribution of the weather-induced yield deviation to be negatively skewed. We can

simulate the distribution of the weather-induced yield deviation based on the rainfall

and temperature data, together with the estimated yield function in model 4.1. For each

weather observation, we calculate the weather-induced yield deviation by evaluating

(α1,sH+α2,sR) at estimated coefficients in table 4.2. Histograms of the weather-induced

yield deviation in figure 4.5 show that the empirical distributions of weather-induced

yield deviations are indeed negatively skewed. The second column of table 4.7 lists the

skewness statistics of the weather-induced yield deviation.

Table 4.7: Skewness Statistics

Weather-induced deviates Residuals

IL -0.73 -0.28

IN -0.90 -0.38

IA -1.87 -0.63

MI -1.37 -0.55

MN -2.78 -0.94

MO -0.15 -0.26

OH -1.16 -0.10

WI -2.02 -0.54
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Figure 4.5: Histograms of weather-induced yield deviates, by state

In fact, negative skewness in weather-induced deviates accounts for most of the neg-

ative skewness in the distribution of corn yield. Figure 4.6 shows that the distribution of

the residuals from the yield model (4.2) is either symmetric or slightly negatively skewed.

Column 3 in table 4.7 list the skewness statistics of the residuals. These numbers are

significantly closer to zero than those in column 2 except in Missouri. This indicates

that weather factors explain the most part of the negative skewness that there is noth-

ing significantly skewed unexplained in the residuals. For verification, we sum up the

weather-induced yield deviations and the residuals from model (4.2). Histograms of the

sum in figure 4.7 look similar to those in figure (4.1) as expected.
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Figure 4.6: Histograms of residuals from regressing yield on a time trend and weather

variables, by state
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Figure 4.7: Histograms of weather-induced yield deviates plus residuals, by state
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4.6 Conclusions

Much work has been done in understanding how weather affects corn yields. Only a

couple of studies carefully model the non-linear weather impact or use disaggregated data

to estimate the model. Even fewer studies incorporate weather effects in estimating the

yield trend and yield risk. No attempts have been made to empirically study the source of

the negative skewness of the yield distribution from the perspective of weather impacts.

This study is based on estimating the nonlinear impacts of rainfall and temperature on

corn yields using county-level panel data. We estimate the confounding effects of climate

trend on the yield trend estimation. We also analyze how changes in weather variability

may confound the hypothesis testing of the constant coefficient of variation. Based on

our yield model, we estimate the true yield trend and how yield risk evolve over time,

isolating the climate trend and temporal patterns in weather variation. Our finding that

the marginal benefit of favorable weather is decreasing explains the negative skewness of

the distribution of corn yields.

The climate trend from 1980 to 2009 explains up to 20% of observed state average

yield trend. Not taking into account the temporal weather pattern would inflate yield

trend estimates in almost all corn belt states. For a short sample period, the temporal

weather pattern could be significantly different across states, biasing the yield trend esti-

mates in different directions. For the sample period from 1990 to 2002, for example, yield

trend estimates for Ohio and Indiana are underestimated by 86% and 33% respectively

while those for Iowa and Minnesota are overestimated by 30% to 40%, in a model that

overlooks weather impacts.

In testing the hypothesis of constant coefficient of variation, most of the previous

studies disregard changes in weather variability and its impact on yield risk. We isolate
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the temporal patter of weather variation and then test the hypothesis of constant coeffi-

cient of variation. We reject the hypothesis in all states. In seven out of the eight states,

evidence is in favor of decreasing relative yield risk.

Weather plays an important role in determining the distribution of corn yields. Be-

cause corn yield is concave in both temperature and rainfall, the distribution of corn

yield is negatively skewed even though the distribution of rainfall is positively skewed

and the distribution of temperature is almost symmetric. A relationship between the

concave transformation and the negative skewness is drawn and is supported by empir-

ical results. The distribution of weather-induced yield deviation is negatively skewed.

Accounting for weather, the distribution of the residual deviations is almost symmetric.
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CHAPTER 5. GENERAL CONCLUSIONS

5.1 Conclusions

In agriculture production, growing season temperature and rainfall are two primary

factors determining crop yield outcomes. This dissertation has analyzed three different

areas relating to weather impacts on crop yields.

The focus of chapter 2 was on the evolution of drought tolerance of corn and soybeans

in the U.S. By constructing an objective drought index and correlating to crop yields,

we estimated how drought tolerance of corn and soybeans changed over time. Regression

results show that corn is becoming less susceptible to drought measured both in absolute

bushel loss and in percentage terms. For soybeans, constant bushel loss is not rejected.

But measured in percentage terms, yield lost to a given drought severity decreased over

time. The decreasing relative susceptibility for both crops cast doubt on the Loss Cost

Ratio (LCR) method used in rating crop insurance programs in the United States. The

actuarially fair premium rates were calculated using Monte Carlo analysis. Simulation

results show that accounting for increased drought tolerance of corn and soybeans would

imply major cuts on premium rates for the Group Risk Plan (GRP).

In chapter 3, focus shifted to the estimation methodology. The goal of this chapter

was to develop and estimate a flexible model that reflects the nonlinear impacts of rainfall

and temperature on corn yields. A sampling-based Bayesian estimation methodology was
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presented. Specifically, the method outlined the simultaneous estimation of the thresh-

olds and the marginal effects of weather variables through the use of the Gibbs sampling

and the Metropolis-Hastings algorithm. Using county-level corn yields with matching

temperature and rainfall data, a linear-spline model with endogenous thresholds was es-

timated. Results suggest that corn yield is concave in both weather variables. In general,

the curve of corn yield against rainfall or temperature is nonlinear and asymmetric. Lack

of rainfall and excessive heat are two primary sources of yield loss in all corn belt states.

In northern states, a moderate increase in temperature up to a threshold is beneficial to

corn yields. But in the southern states, an increase in temperature always reduces corn

yields. An excessive amount of rainfall does not cause significant yield losses in the east

part of the Corn Belt while it causes large yield losses in the west.

The first and second parts of chapter 4 were devoted to estimating the true yield

trend and how yield risk evolve over time, isolating the climate trend and temporal

patterns in weather variation. We estimated the confounding effects of climate trend on

the yield trend estimation. The climate trend from 1980 to 2009 explains up to 20%

of observed state average yield trend. Not taking into account the temporal weather

pattern would inflate yield trend estimates in almost all corn belt states. For a short

sample period, the temporal weather pattern could be different across states, biasing the

yield trend estimates in different directions. For the sample period from 1990 to 2002,

for example, yield trend estimates for Ohio and Indiana are underestimated by 86% and

33% respectively while those for Iowa and Minnesota are overestimated by 30% to 40%

in a model that overlooks weather impacts. We also analyzed how changes in weather

variability may confound the hypothesis testing of the constant coefficient of variation

of corn yield. Isolating the confounding weather variations, we rejected the hypothesis
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in all states. In seven out of the eight states, evidence is in favor of decreasing relative

yield risk. In the third part of chapter 4, we explained why the distribution of corn yield

was negatively skewed from the perspective of weather impacts. A relationship between

the concave transformation and the negative skewness was drawn and was supported

by empirical results. The distribution of weather-induced yield deviation is negatively

skewed. Accounting for weather, the distribution of the residual deviation is almost

symmetric.
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